

Notes – Basic Data Analysis

- I. Data Types
 - a. Quantitative
 - i. Observations based on a numerical scale.
 - ii. Continuous: Corresponds to an entire interval on the number line.
 - iii. Discrete: Set of possible values corresponds to an isolated set of points on the number line.
 - b. Qualitative: Everything else
 - c. Example
 - i. EU = a car
 - ii. X = Number of Cylinders = {3, 4, 5, 6, 8, 12} discrete
 - iii. $Y = \frac{1}{4}$ Mile Time = {y | $8 \le y \le 15$ } continuous
 - iv. Z = Brand = {GM, Ford, ...} qualitative
 - d. Type of analysis depends largely on the type of data.
 - e. Some measurements are intrinsically discrete but we'll still treat them as continuous.
 - i. Example: Cost in dollars.
 - ii. There are discrete values (\$1.01, \$1.02, ...)
 - iii. There are so many, however, that it's better to treat the data as continuous
- II. Statistics
 - a. What motivates statistics?
 - i. We need to answer a question.
 - ii. Should I buy a car? Will this drug be effective?
 - b. Procedure
 - i. Begin with a question
 - ii. Design a study (STAT-231 does this in detail)
 - iii. Gather Information (STAT-233: Sampling Problems)
 - iv. Summarize the Data
 - v. (Need some probability at this point)
 - vi. Make an inference about the population
 - vii. Reach some conclusions
 - c. Tools
 - i. Need some probability
 - ii. Use the computer to help us with each step.
- Ш. Summarizing Data
 - a. Start with raw data (we'll assume a proper study was designed, et cetera)
 - b. Data Reduction
 - i. Too much information isn't useful.
 - ii. We need to reduce the amount.
 - iii. Order the Data
 - 1. A simple step that can help quite a bit.
 - 2. x_i is one measurement from a single EU
 - 3. x_1 is the first measurement taken, x_2 the second
 - 4. $x^{(i)}$ is an ordered measure

 - 5. $x^{(1)}$ is the minimum value, $x^{(2)}$ the next highest 6. $x^{(1)}$ called the first order statistic, $x^{(2)}$ the second order statistic
 - 7. Sometimes written $x_{(1)}$ or x_1 (subscript in bold)
 - iv. Represent Graphically: Techniques discussed later
 - v. Do a numerical summary
 - 1. Find some numbers that "represent" the data
 - 2. Location
 - a. mean, median, etc
 - b. Where is the data "located"
 - 3. Spread: How diverse is the data?
- Features of a Data Set IV.

- a. Center
 - i. What's a typical observation?
 - ii. About what point is the data centered?
- b. Spread
 - i. How much variability?
 - ii. Bell Curve

- c. Shape
- d. Outliers: Unusual Observations
- e. Gaps
- f. Clusters
 - i. The example above with two populations has two clusters.
 - ii. Might be appropriate to separate into two different groups
- V. Graphical Display
 - a. Histograms are one traditional display
 - b. Stem-and-Leaf
 - i. See the Homes handout
 - ii.

0	9	0	9
1	684	1	468
2	59	2	59
3	5	3	5
4	72	4	27
5		5	
6		6	
7	0	7	0

iii. Stems on left, represent 10s digit

- iv. Leaves on right, represent 1s digit
- v. This can be done easily without the computer
- vi. Can see min, max easily
- vii. Can identify clusters, outliers (red flags: recording errors? mistakes?)
- viii. Minitab Report
 - 1. Includes depths the numbers on the far left
 - 2. These are the distance to the nearest end of the dataset.
 - 3. Standard Format
 - a. One line per stem
 - b. Like that shown above
 - 4. Stretched
 - a. Two lines per stem
 - b. O * O HI (0, 1, 2, 3, 4)
 - c. O O LO (5, 6, 7, 8, 9)
 - 5. Squeezed
 - a. Five lines per stem
 - b. O * (0, 1)
 - c. O t (2, 3) d. O f (4, 5)
 - e. Os (6,7)
 - f. $O \bullet$ (8, 9)
 - 6. Guidelines
 - a. Pick a number of lines between \sqrt{n} and $2\sqrt{n}$
 - b. Truncate, don't round (otherwise it's too hard to refer back to the raw data)
 - c. Use one digit leaves
 - d. No commas, spaces or decimals
 - e. The objective is to simplify, so keep it simple.
- c. Frequency Table
 - i. See the Voles handout
 - ii. Category
 - 1. Denoted i
 - 2. "Litter Size" in the Voles example
 - iii. Absolute Frequency
 - 1. Denoted F_i
 - 2. Number of observations in each category
 - iv. Relative Frequency
 - 1. Denoted RF_i
 - 2. F_i/n
 - 3. $RF_3 = 13/170 = 0.0765 = 7.65\%$
 - v. Cumulative Relative Frequency
 - 1. Denoted CRF_i
 - 2. Sum of all RF_J for $0 \le j \le i$
 - 3. $CRF_3 = 1/170 + 2/170 + 13/170 = 16/170 = 0.0941$
 - 4. CRF_N will always be 100%
 - vi. Cumulative Distribution Function
 - 1. CDF
 - 2. $F(a) = P(x \le a)$
 - 3. Proportion of elements that are less than or equal to a
 - 4. Can also be considered the probability that $x \le a$
 - 5. Voles Example
 - a. $F(6) = 0.6353 = P(x \le 6)$
 - b. $F(8) = 0.9353 = P(x \le 8)$
 - vii. Event Probabilities
 - 1. P(x > 6)

- a. Not in the table!
- b. We do have $P(x \le 6)$
- c. $P(x > 6) = 1 P(x \le 6) = 0.3647$
- d. "Upper tail" probability or percentage
- e. Watch out for \geq vs > et cetera
- 2. $P(3 < x \le 8)$
 - a. $P(x \le 8) P(x < 3)$
 - b. $P(x \le 8) P(x \le 2)$
 - c. F(8) F(2) = 0.9177
- VI. Numerical Descriptive Measures
 - a. Location

- iii. Two sets of data, identical in shape but positioned differentlky
- iv. Population Mean
 - 1. Denoted μ
 - 2. $\mu = (x_1 + x_2 + ... + x_N) / N$
- v. Sample Mean
 - 1. Denoted x.
 - 2. $\bar{\mathbf{x}} = \sum \mathbf{x}_i / \mathbf{n} = \mathbf{T} / \mathbf{n}$
 - 3. T used for "Total"
- vi. Median
 - 1. Middle value
 - "Resistant" (insensitive to the presence of extreme values) 2.
 - 3. $\sim \mu$ (population), $\sim x$ (sample)
- vii. Example 1. C

Data = {1, 2, 3}
$$\bar{x} = \frac{(1+2+3)}{2} / a = 2$$

a.
$$\bar{x} = \frac{(1+2+3)}{(2)} / _3 = 2$$

- b. $\sim x = x^{(2)} = 2$
- c. Symmetric distribution
- 2. Data {1, 2, 30}

b. $\sim x = 2$ (resistant!)

viii. Skewed to Right / Positive Skew 1.

ix. Skewed to Left / Negative Skew 1.

- 2. $-x > \bar{x}$
- x. There are some exceptions, but generally the data fits this pattern.
- xi. Trimmed Mean

- 1. \bar{x}_{tr} = Sum from 2 to n 1 (eliminate smallest and largest values)
- 2. $\bar{x}_{tr (5\%)}$ Trim 5% off the top and 5% off the bottom.
- 3. Minitab uses so-called 5% trimmed mean
- 4. Wants to get as close to 5% as it can if the number of elements doesn't allow exactly 5% to be trimmed.
- xii. What to Use
 - 1. Symmetric (no outliers) mean
 - 2. Symmetric (with outliers) trimmed mean
 - 3. Skewed
- xiii. Binary Data
 - 1. Sample n = 100
 - 2. $x = \{1 \text{ approve } \}$
 - 0 o/w
 - 3. $\bar{x} = (1 + 0 + 0 + 1 + ... + 1 + 0) / 100 = (49(0) + 59(1)) / 100 = 59/100$

median

- 4. Gives the proportion that approve!
- 5. Usually designate this p rather than \bar{x} but the same concept works just as well.
- b. Dispersion
 - i. Example A

- iii. Range
 - 1. Denoted R
 - 2. Total "width" of the data
 - 3. $R = x^{(n)} x^{(1)}$
- iv. Need a more versatile measure than Range.
- v. Variance
 - 1. $\Sigma |\mathbf{x}_i \boldsymbol{\mu}| / \mathbf{N} \ge \mathbf{0}$
 - a. Almost right.
 - b. We can improve still further.
 - 2. Population Variance
 - a. $\sigma^2 = \Sigma (x_i \mu)^2 / N$
 - b. Always ≥ 0
 - c. Has some nice mathematical and statistical properties.
 - d. The problem is that the units get squared too.
 - 3. Standard Deviation: $\sigma = \sqrt{\sigma^2}$
 - 4. Sample Variance
 - a. $s^2 = \Sigma (x_i \bar{x})^2 / N$
 - b. We usually divide by (N − 1) to adjust for the tendency to underestimate.
 - 5. Sample Standard Deviation $s = \sqrt{s^2}$
- vi. Example
 - 1. EU = a bat (the critter, not the stick)
 - 2. n = 11
 - 3. x = distance (cm)
 - 4. x = {62, 23, ..., 83}

- 5. Statistics
 - a. x = 48.4 cm
 - b. R = 60 cm
 - c. $s^2 = 327 \text{ cm}^2$
 - d. s = 18.1 cm
- vii. Computational Formula for Variance
 - 1. $s^2 = (\Sigma x^2 (\Sigma x)^2/n) / (n-1)$
 - 2. Equivalent mathematically but harder to understand conceptually.
 - 3. Use this when calculating.
- c. Quartiles
 - i. Median cuts data in half.
 - ii. Quartiles cut data in fourths.
 - iii. Quartiles = Fourths = Hinges
 - iv. When n is odd
 - 1. The book says to exclude the median from each half (pg 105)
 - 2. Minitab includes the median in each half.
 - 3. We'll side with minitab.
 - v. Inter-Quartile Range
 - 1. Denoted IQR
 - 2. $IQR = Q_3 Q_1$
 - vi. Five Number Summary

1.

		Sample Size
15593		Median
13685	16457	Q_1 / Q_3
12784	22934	Min / Max
	3685	3685 16457

- vii. Letter Value Display
 - 1. For larger datasets, may want a more complete summary (1/4, 1/16, ...)
 - 2. N Sample Size
 - 3. M Median
 - 4. F Fourth Also H (Hinge).
 - 5. E Eighth
 - 6. D 1/16
 - 7. C 1/32
- John Tukey noticed the pattern with F..E.. and decided to continue it down to A, then loop
- 8. B 1/64 around back to Z.
- 9. A 1/128
- 10. Z 1/256
- d. BoxPlot
 - i. A graphical representation using these data.
 - ii. Need Q₁, Q₂, Q₃, IQR
 - iii. Inner Fences
 - 1. Boundaries beyond which an observation is considered unusual
 - 2. Lower = $Q_1 1.5(IQR)$
 - 3. Upper = $Q_3 + 1.5(IQR)$
 - 4. Bat Example
 - a. Lower = 13685 1.5(2772) = 9527
 - b. Upper = 16457 + 1.5(2772) = 20615
 - 5. These are *mild* outliers
 - iv. Outer Fences
 - 1. Lower = $Q_1 3.0(IQR)$
 - 2. Upper = $Q_3 + 3.0(IQR)$
 - 3. These are *extreme* outliers.
 - v. Why 1.5?

- 1. With the classic bell curve, we want only 1 in 100 observations to be mild outliers.
- 2. The value 1.5(IQR) is derived from this.
- 3. Consider 1.5(IQR) to be one step. Then inner fences are one step away, outer fences are two steps away.
- vi.

- 1. Box width is IQR
- 2. Center line at Median
- 3. Whiskers extend to most extreme non-outlier called adjacents.
- 4. Minitab marks mild outliers with * and extreme outliers with o
- 5. Very effective graphic, good to use for final projects.
- 6. Not good for seeing gaps or clusters.
- 7. Good for displaying many graphs at the same time.
- VII. Explanations for Outliers
 - a. A mistake!
 - i. Does it come from the wrong population?
 - ii. Perhaps all funds measured were growth funds but one.
 - b. Recording Error
 - i. The wrong value was recorded.
 - ii. Correct it if the correct value can be found. Otherwise remove it.
 - c. Faulty Measurement Device
 - i. The machine taking the measurements may simply be out of calibration.
 - ii. This would render all data "strange" in comparison with some other source.
 - d. A Rare Event
 - i. If all other explanations fail, assume the value is legitimate.
 - ii. The first thought should always be that it's some kind of error!
- VIII. Z-Score
 - a. $Z = (x \mu) / \sigma$
 - b. (Calculated for a particular ER)
 - c. Positive = Right of mean, Negative = Left
 - d. Dividing by σ puts everything on a common scale.
 - e. A Z score of 1.06 indicates that the measurement is 1.06 standard deviations from the mean.

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK: