

- I. Statistics Organization at UVM
 - a. Statistics
 - i. Methods
 - 1. 111, 141, 143 (only take one)
 - 2. 211
 - 3. When to use a particular procedure, how to use it, et cetera.
 - 4. No discussion of why procedures work.
 - ii. Theory
 - 1. 241
 - 2. 261+262 (sequence)
 - 3. Why do procedures work?
 - b. Probability
 - i. 51, 151, 251
 - More on the distinction between Statistics and Probability later. C
- II. Introduction
 - a. Alternate Textbooks
 - i. All found in the library
 - ii. General
 - 1. Snedecor and Cochran
 - 2. McClave and Dietrich
 - 3. Steele and Torrie
 - 4. Dixon and Massey
 - 5. Blattacharyya and Johnson
 - iii. Exploratory Data Analysis
 - 1. John W. Tukev
 - 2. Hoaglin, Mosteller, Tukey
 - iv. CS Applications: ER Dougherty
 - b. Reasons to Study Statistics
 - i. A filter through which we view reality
 - ii. Purpose is to learn what is true, then update our beliefs about the nature of reality.
 - iii. Used properly, honestly, Statistics will allow us to draw reasonable conclusions from data.
 - iv. Gives "good" answers most of the time (as opposed to "perfect answers all the time").
 - v. How do we know what we know
 - 1. Justified True Belief (JTB Model)
 - Suppose we have a proposition p.
 We must believe p.

 - 4. p must be true.
 - 5. Our belief in p must be justified.
- III. Definitions
 - a. Experimental Unit (EU): Object or entity from which a measurement is obtained.
 - i. Entity might be a human about whom we are measuring height.
 - ii. Entity might be a country about which we are measuring GDP.
 - b. Population: A collection of all experimental units of interest, numbering N total units.
 - i. All textbooks published in 2003
 - ii. All Vermont males aged over 65.
 - iii. Depends entirely on what is of interest to the investigator.
 - c. Sample: A subset of the population with n elements, $n \le N$.
 - i. Usually elements have been selected in a very specific, scientific way.
 - ii. Could, by definition, be a purely random selection.
 - d. Census: A sample where n = N.

- IV. Exercise 1.7
 - a. Data
 - i. EU = a brick
 - ii. N = 5,000
 - iii. n = 100
 - iv. Sampling Fraction = n / N = 1 / 50 = 2%.
 - b. We want to know what proportion of bricks are usable.
 - c. Define $x = \{0 \text{ non-defective}, 0 \text{ defective}\}$
 - d. Population Proportion
 - i. Denoted π
 - ii. Proportion of non-defective bricks in the population
 - iii. $\pi = 4800 / 5000 = 0.96$
 - iv. Not a number we usually know
 - v. Called a parameter. a fixed constant characterizing some important feature.
 - e. Sample Proportion
 - Denoted p
 - ii. Could be $^{0}/_{100}$, $^{1}/_{100}$, ..., $^{100}/_{100}$
 - iii. Some values are more likely than others, but all are possible.
 - iv. Suppose p = 94/100 = 0.94
 - v. Called a statistic: based on data.
 - vi. This is not constant: it depends on what's in the sample.
 - vii. Usually this is the only information we have to go on.
 - f. Accuracy of the Statistic
 - i. We don't know π but we can setup an interval around p and state π with some level of confidence.
 - ii. $\pi \in (0.88, 0.97)$ with 90% confidence
 - iii. Our best guess is 0.94, but we can do better with an interval estimate.
- V. Free Press Example
 - a. jama.ama-assn.org 8/27/2003
 - b.

	Zoloft	Placebo	
Good	130	110	240
Bad	59	77	136
	189	187	376

- c. p = 240/376 = 0.64
- d. $p_z = 130/189 = 0.69$
- e. $p_p = 110/187 = 0.59$
- f. So Zoloft users experienced good outcomes slightly more often than placebo users.
- g. Hypothesis Testing
 - i. $H_0: \pi_z = \pi_p$ (called the "null hypothesis" because there's no difference)
 - ii. $H_1: \pi_z \neq \pi_p$
 - iii. One must be true!
 - iv. Observed Significant Level (P value) = 0.044
 - 1. Tells us that H_1 is more believable than H_0 .
 - 2. If p value is less than 0.05, go for H_1
 - 3. Otherwise go for H_0
 - 4. Details on all this later.
 - v. $p_z p_p = 0.10$ observed difference (in sample)
 - vi. We can be 95% confident that $\pi \in [0.3\%, 20\%]$
- h. Ethics
 - i. Such a study would have to be approved by an Institutional Review Board
 - ii. Subjects must be given "lay review" of the details of the study before participating.

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK: