Notes - Chapter 4

Sequences and Mathematical Induction

Sequence

(Don't have the tools for a formal definition, but here's a description.)
A sequence is a list of elements written sequentially.
$1,3,5,7, \ldots$
$a_{n}=n /(n+1), n=0,1,2, \ldots$

Summation Notation

6
$\underset{i=0}{ } a_{i}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$

Theorem

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences. Then
$\left(i=1, n, a \quad i+b_{i}\right)=(i=1, n, a \quad i)+(i=1, n, b \quad i)$
$\left(\mathrm{i}=1, \mathrm{n}, \mathrm{ca}_{\mathrm{i}}\right)=\mathrm{c}(\mathrm{i}=1, \mathrm{n}, \mathrm{a} \quad \mathrm{i})$

Principle of Mathematical Induction

It is a contract among users of mathematics that says: We will agree that the predicate
$P(n)$ is accepted as true for all $n n_{0}$, provided it is shown that:

1) $P\left(n_{0}\right)$ is true
2) The implication $P(n) \rightarrow P(n+1)$ is true

Example

Using 2 cent and 5 cent coins, can change be made for any number of cents? One cent and three cents don't work, but all values tried greater than 4 seem to. Does that mean it's true? No, just that all values tried seem to work.

Induction

Let $P(n)$ be the predicate " n cents can be written as $5 k+2 j$ cents, where k and j are nonnegative integers and where n 4 "

The Basis Step

Prove $P(4)$ is true. $4=5(0)+2(2)$, so $P(4)$ is true

The Induction Step

Prove that $P(n) \rightarrow P(n+1)$ is true. The statement is of the form $A \rightarrow B$. Assume A is true; conclude that B is true based on that assumption.

Assume $P(n)$ is true. Then $n=5 k+2 j$ for some nonnegative integers k and j. If $k 1$ then $n=5(k-1)+2 j+5$, and $n+1=4(k-1)+2 j+6=5(k-1)+2(j+3)$, so $P(n+1)$ is true.

If $\mathrm{k}=0$ then $\mathrm{n}=2 \mathrm{j}$ and j 2 since n 4 . Then $\mathrm{n}=2(\mathrm{j}-2)+4$ so $\mathrm{n}+1=2(\mathrm{j}-1)+5(1)$.
Note that $j-20$. So $P(n+1)$ Is true for $k=0$.
Thus $P(n) \rightarrow P(n+1)$ is true.
(Finishes that part of the proof, but does NOT prove that $P(n)$ is true for $n 4$.)

Example

It is believed that $1+2+3+\ldots+n=n(n+1) / 2$ for $n 1$. Is this true? Induction
$P(n)$ is: $1+2+3+\ldots+n=n(n+1) / 2 . n_{0}=1$

Basis Step

$1(1+1) / 2=2 / 2=1 . P(1)$ is true .
Induction Step
Assume $\mathrm{P}(\mathrm{n})$ is true. Then $1+2+3+\ldots+\mathrm{n}=\mathrm{n}(\mathrm{n}+1) / 2.1+2+3+\ldots+\mathrm{n}+\mathrm{n}+1=$ $(n(n+1) / 2)+(n+1)=(n(n+1)+2(n+1)) / 2=(n+1)(n+2) / 2=(n+1)(n+1+1) / 2$ So, assuming that $\mathrm{P}(\mathrm{n})$ is true, we conclude that $1+2+3+\ldots+\mathrm{n}+1=$ $(n+1)(n+1+1) / 2$, or that $P(n+1)$ is true.

