
Benjamin Fenster
 CS-296 (Damon)
 15 March 2005

Design

I. Goals
a. Easy to use, efficient, aesthetic
b. Are there special devices?
c. Are there issues with the target audience?

II. Steps
a. Task analysis. What will the user be doing?
b. Metaphor development
c. Affordances
d. Look and Feel – intended overall impression
e. Dialog Design – What’s the sequence of steps?
f. Information Presentation – How will it be presented (sometimes easy, sometimes hard)
g. Layout

III. Task Analysis
a. What does the user want to accomplish?
b. What do they know?
c. What do they need to know?
d. How is it done now? Use that model if possible.
e. User Analysis

i. What can they do? What skills do they have?
ii. What can’t they do? What are they unwilling to do (e.g. doctors feeling things are

beneath them)?
f. Tasks

i. Point accomplishments. One focused short-term goal.
ii. Distinct from the features. Those are action oriented (what can you do). Here

we’re describing what the user wants to do.
g. Use Cases

i. Structured document
ii. There’s some graphical notation, but it’s not really helpful.
iii. Includes who, what, why, when
iv. Have one use case for each task.
v. Always written from the perspective of the goal, not the solution. You’ll say

“confirm the meeting,” not “click OK.”
h. Sources

i. Documentation
1. Tells what other products already do.
2. It’s easy to find manuals; it’s usually easy to interpret tasks in them.

ii. Guessing
1. Can try to guess about what the users want.
2. You’ll probably be really bad at it.

iii. Ask the Users
1. Make sure you’re talking to the real users, not a manager who’s just

passing work down to a secretary and who doesn’t really know what’s
needed.

2. May not get good answers about what users want, and it’s hard to figure
out what questions to ask.

iv. Observe Users
1. Observe everything the user does.
2. You’ll see two things happening and know they should be done together.
3. Customer behavior while being watched isn’t always “normal behavior”

v. Task Decomposition
1. You know the larger problem.
2. Decompose it into smaller goals.

IV. Metaphor

a. A good metaphor improves both learning and efficiency.
b. Can encourage the user to take some actions faster, for example.
c. Obviously user needs to buy into the metaphor.
d. Want everything to fit the metaphor.
e. It’s really hard to get a great metaphor. “Okay” metaphors happen all the time.
f. Where to get ideas?

i. Existing processes
ii. Physical system (even something that’s not real, or doesn’t perfectly follow the

laws of physics)
iii. Imagination

V. Affordances
a. By itself, an affordance doesn’t do anything. It just gives a clue about how to do

something.
b. Can be a decoration (painted handle on the fridge). Can be a layout association.
c. Shapes (square = checkbox, circle = radio button) can be affordances.
d. Introduce the metaphor (show the way the physical thing works – get in the mindset)
e. Foreshadowing – what’s coming next
f. Use as many affordances as you can without overwhelming the user.
g. User testing will show a lack of affordances: if people get confused, they need more hints

VI. Look and Feel
a. Be consistent with the platform, first of all.
b. Second, the look and feel id dictated by the design goal (simple vs. “ooh ahh.”)
c. It’s also dictated by time constraints.

VII. Dialog
a. Who does what and when?
b. Not too much detail – don’t care about whether there are dashes in SSNs.
c. People don’t want to watch the computer. People don’t want to just type.
d. People want to be having a dialog. Good interfaces promote and facilitate a dialog.
e. Dialogs (any dialogs) can be described at three levels

i. Semantics: What is the meaning?
ii. Syntax: What is it legal to say and when?
iii. Lexical: Low-level syntax (words)

f. In HCI
i. Lexical means what controls you offer
ii. Syntax is defined by the dialog itself.
iii. Semantics describes what a control does.

g. Syntax should map easily to semantics. Otherwise you’ve got a very modal application.
h. There’s no clear boundary between lexical and syntactical
i. Specific Dialogs

i. Who’s allowed to say what when?
ii. Among people there are rules about who’s turn it is, who’s allowed to interrupt

and when, what’s appropriate to say.
iii. Ideally style is orthogonal to dialog.

j. Notation
i. Need to communicate the dialog to yourself and others (i.e. users)
ii. There are many, many notations
iii. Simple Text

1. Human: Xxxxx Computer: Yyyyy
2. May have variables “Do you, ____, take ____, to be your lawfully

wedded husband?”
3. May also have decision points. “How do you plead?” “Guilty / Not Guilty”
4. It’s easy to write and usually easy to read, but terrible at describing

choices. Even the “Guilty / Not Guilty” example isn’t completely clear.
iv. Grammars

1. Good at explaining choices. Gives a precise indication of what and when.

2. It’s hard to see who does what at the high level. Can’t see the forest
through the trees.

v. Finite State Machines
1. States say where you are in the program
2. Arrows tell user actions.
3. You get lots of arrows and lots of states very easily.
4. Common exits and common sequences (e.g. “help”, which does

essentially the same thing but returns to a different point depending on
where you started) are hard to model.

5. It’s still pretty good, despite the complexity.
vi. State Charts

1. Can group states together.
2. This is a huge improvement over Finite State Machines.

vii. Formal Notations
1. State Machines, State Charts, and Grammars are all formal notations.

There are other formal notations we won’t cover.
2. Automatic Generation. By building a formal description you can

automatically build the interface code that does lots of the work.
k. Designing Dialogs

i. Refining Tasks
1. Have to get down to single actions (typing in a text field).
2. Some tasks get dropped (like the user thinking about something)

ii. Add Decision Points. End up with a “tree” structure. It’s not really a tree since it
will contain cycles and merges, but it should seem a lot like one.

iii. Define Ordering.
1. Is the ordering required? Is it just what’s comfortable? Consistent?

Know why you’re doing it that way!
2. Remember the user wants maximum control.

l. Doing Design
i. Build the complete flow for each task
ii. Check parallelism (are things in the same order on multiple tasks?)
iii. Evaluate
iv. State Machines / State Charts make it easy to evaluate completeness. You

should have the same set of arrows coming from every state. So if something’s
illegal, indicate that explicitly.

v. Check consistency across tasks (of computer responses)
vi. Check “reachability”

1. Make sure the user can’t back into some corner
2. Look for isolated-looking islands on the state chart
3. (Example: Computer says, “Floppy not formatted” but won’t allow format)
4. If the system provides the only way out, make sure it’s possible for the

code to generate that way out!
vii. Neighborhood. Related states should be easily reachable (e.g. setting font size,

font face). What’s the shortest path from X to Y?
VIII. Information Presentation

a. Can enrich or hurt the metaphor.
b. Restricted by human perception
c. Kinds

i. Continuous Numerical (scientific data, graph it)
ii. Discrete Numerical (charts)
iii. Sequential (charts, calendar)
iv. Active, Small amounts (e.g. microphone level at this moment – have an individual

indicator for each datum).
v. Categorization, variation over time, relationships

d. Resources
i. Edward Tufte (“Grand Poobah” of information presentation)

ii. Robert Spence
e. Classics: Bar charts, pie charts, …
f. Variables

i. Size (line thickness, radius of dots)
ii. Shape
iii. Color
iv. Texture
v. Position
vi. Connections
vii. Text (labels)

g. Potential Problems
i. Color and texture has perceptual problems. Use different shades too.
ii. Shape has limited information density.
iii. Lines can get easily overcrowded (think of a BlueJ UML diagram)
iv. Size

1. Can be badly misinterpreted (area especially). Increasing edges of a
square 40% doubles the area. People don’t see it that way though.

2. Don’t “mislead” by more than 5% bigger or smaller than the size should
really be (based on other objects). You get some artistic license, but if
it’s off by too much it’s basically lying.

h. Guidelines
i. Data-Ink. You want most of the ink (non-background pixels on the computer) to

be representing data as opposed to art.
ii. Don’t go overboard and just show data points on a scatter plot, but be aware of

the data-ink ratio.
iii. “Ducks” – don’t change the form in order to make it look pretty.

i. Changing View
i. When the data don’t fit on one page or screen, or if the user can interact with the

data, you need to be more active than just displaying.
ii. Scrolling

1. Everything from simple 1D scrolling up to elaborate 3D rendering with
data gloves and a wraparound screen.

2. In traditional scrolling, it’s very easy to lose context (especially when you
can jump to an arbitrary point).

3. You want some “big picture” in addition to the detail, like the map in the
corner of a gaming screen.

4. Can enlarge the detail section (magnifying glass of some sort) or shrink
the context (3D effect of having non-focused data trailing into the screen)

iii. Pan & Zoom
1. Panning is just scrolling
2. In some cases zoom just changes the magnification.
3. Zoom can also mean adding data without changing the magnification

(e.g. adding details to a network diagram box in MS Project)
j. Information in Controls

i. Classic example: the size of the scrollbar changes to reflect the document size
ii. Another classic: Mail programs bold mail folder names or change the icon to

indicate that they contain new mail.
iii. Don’t want to go overboard and have stuff moving around too much

k. Active Information
i. Data is the control
ii. Drag things on a map, for example.

IX. Interaction Design
a. “I’ll use a TextBox, not a ComboBox.”
b. Map each user action to a control on the screen. Most of these are trivial.
c. Style (WIMP, …) does play a huge part now.
d. WIMP Controls

i. Text Field
1. One line or many? Scrolling? Validation? Initial value?
2. Need to think about all these things.

ii. Button: Picture or text? When (if ever) is it the default?
iii. Menus: How deep, how wide, how are items grouped?
iv. Click / Select: How much is selected? What if you click nothing? Shift- or

control-click? Lots of combinations to consider!
e. Custom Controls

i. May support the metaphor or give more subtle control to the user.
ii. If it’s unusual, remember it’ll take user some time to learn.
iii. Alphabetic Slider:

1. |_________/_____________________|
A B C D E F G H I J K L …

2. Conveys information about how many elements are under each letter
and precisely where the display is currently located (toward the
beginning of the Cs).

f. Controls can appear / disappear as you need them in software. In consumer electronics,
on the other hand, you have a certain number of buttons. It costs more money to add
more buttons, and you can’t change them in mid-use.

g. Device Controls
i. Buttons, rocker controls, slider.
ii. Toggles (switches), touch pad
iii. Rotary switch (n-way selector)
iv. Continuous Rotary Knob
v. Can’t disable controls either, so they must always do something
vi.

X. Layout
a. You now know what controls to use. Where do you want to put them?
b. Grouping

i. This is the most important thing!
ii. Break unrelated / separate chunks apart
iii. Breaking across pages is generally bad

1. Copy over anything needed from previous screens if you have to insert a
page break.

2. This limits the user’s control.
3. It’s also hard for the user to retain context.

iv. On the other hand, page breaks are good sometimes
1. When you want the user to see a new context.
2. This facilitates high-level chunking

c. Layout Within Pages
i. Grouping, grouping, grouping.
ii. Remember six degree field of vision (about two inches on the screen)

d. Four Guidelines
i. Proximity. Be explicit about when things go together and when they’re apart.
ii. Alignment

1. Align elements where it’s reasonable.
2. When centering, vary the length of each line dramatically. If lines of text

are a similar length and centered, the edges just look ragged.
iii. Consistency

1. Use the same basic structure on every page.
2. Also use the same font, colors, et cetera.
3. Use “equivalent” graphics, labels, et cetera. If you have a black and

white clip art as the “logo” for one page, don’t use a full color photograph
for the “logo” on another page.

iv. Contrast
1. When pages are different, make it a striking difference.

2. Differentiate headers from text. Don’t just use a 2 point font difference.
e. Density

i. Greater density gets more information on a page, but makes it harder to read.
ii. It may make perfect sense to cram tons of information together if people can get

used to reading it that way.
f. Tullis Metrics

i. Overall density: % of page filled with data (thinking originally about 80 x 20 ASCII
displays, but this can be applied to graphical displays too)

ii. Local density: % of five-degree area filled with data
iii. Complexity: (scary calculation) How many different things are on any line across

the screen?
iv. Separation: Twice the average distance between characters. The point is high-

density text needs more separation to make it identifiable as a group
v. A group is a block of characters within “separation” of each other. Then Group

Size is the average visual angle of groups
g. More Guidelines

i. Optimize for the order in which you expect people to use the controls most often.
ii. If there are two viable orders ABCD and ACBD then you might arrange the

controls: AB
 CD

iii. Start at the top-left and then put OK in the bottom-right.
iv. The first few things in a clump should make the purpose of the clump obvious.
v. Put required things on top and optimal things on the bottom.
vi. Affordances

1. Layout shows some affordances about sequences.
2. Include additional affordances where possible.
3. A progress bar (“Buy � Checkout � Ship”) is a good example.

vii. Multiple Windows.
1. Not talking about multiple documents, but popup windows with additional

information within one dialog.
2. Close child windows when the parent closes.
3. Tie related windows together visually.

viii. Personal Control
1. Give the user as much control as possible.
2. Remember on websites the user already has control so you’d better

account for that! Don’t convey too much information with font, for
example, since the user can change the font!

h. What do the Webby winners have in common?
i. Short links (three words or fewer)
ii. Sans Serif Fonts. Georgia, not Times
iii. When using Serif, use Verdana, not Arial.
iv. Color

1. Four at once looks about right (per page / screen)
2. Up to about seven for the whole application
3. Design for monochrome first, then add colors for aesthetics, emphasis,

and contrast.
XI. Platform Guidelines

a. These aren’t standards or APIs, they’re just guidelines for how everything on a platform
should look.

b. Apple started this with the Apple Human Interface Guidelines.
c. The guidelines for Aqua are about 300 pages long.
d. Apple used to endorse products that followed all the guidelines.
e. Private Guidelines

i. Companies define these for their own products.
ii. What makes this look like an Adobe product, for example?
iii. Called a Style Sheet sometimes (a magazine term)

iv. Not usually publicly available.
f. Guidelines vs. Principles

i. Guidelines are very specific (“default button highlighted in light blue”)
ii. Principles are more general.

