
Benjamin Fenster
 CS-266 (Ling)
 19 December 2005

Notes – Authentication

I. Humans vs. Computers
a. Humans can remember only short keys
b. Computers can authenticate to each other using longer (more secure) keys that are

totally random
c. Passwords as Keys

i. Could use for things like DES: Use a password directly as the key
ii. For RSA, cannot remember the 512 bit key. So encrypt the private key with a

password and store it in a file somewhere
iii. Would be nice to use the password directly
iv. Could use the password as a seed for the random number generator – you’d get

the same primes every time since they’re just a sequence
v. The problem is that it’s hard to do all the exponentiating for finding primes
vi. Plus, would need to agree on which random number generator to use (there are

many)
vii. Could remember which ‘indices’ in the sequence (197 tries, …) but people won’t

want to bother remembering
d. Eavesdropping

i. Could use challenge-response
1. Server sends random R
2. User signs with a private key
3. This is secure if the server is compromised: the server stores no secret

information
4. It’s secure against eavesdropping, since the challenge will be different

every time
ii. With a secret key crypto system

1. User encrypts Ek(R) using the key shared between the user and server
2. If the server were compromised, Trudy would get access to the key!
3. It’s still safe from eavesdropping, since Trudy sees only a plaintext /

ciphertext pair.
iii. Using a hash

1. Server stores only a hash of the password
2. If the password is sent in the clear, eavesdropping would give it away

II. Trusted Intermediaries
a. Hard to remember secret keys for everybody(there are too many keys)
b. Key Distribution Center authenticates both parties
c. Generates a per-session key on the fly
d. Then everybody needs to remember only one key for the KDC
e. Problems

i. This becomes a single point of failure. If the KDC is compromised then there’s
no security at all

ii. Could also be a performance bottleneck
f. Multiple KDCs

i. Since there’s more than one KDC, they need to communicate with each other
ii. I want to talk to someone listed in the KGB’s KDC.
iii. Send a message to the local CIA KDC, and it creates a key to communicate with

the KGB’s KDC.
1. The CIA sends a key back to you and forwards it to the KGB.
2. Requires having a key between the CIA and KGB

iv. Then use that key to make a request of the KGB’s KDC
v. Must store pairwise keys among KDCs.

g. Certificate Authority
i. Ensures that you’re getting the person’s real public key

ii. The CA signs public keys, so as long as you know the CA’s public key you can
verify the signature and thus verify anybody’s public key.

iii. Compromised CA could hurt future security but old public keys are still good
iv. There’s no need to contact the CA to verify that a key is signed correctly though,

so there’s no bottleneck and there’s no risk of eavesdropping from a
compromised certificate authority

v. Certificates are valid forever unless there’s a mechanism to invalidate them after
a time. A revocation list would accomplish this (a blacklist of invalid certificates)

vi. Having multiple certificate authorities just requires signing one another’s public
keys

III. Passwords
a. Password-based authentication
b. Computer knows you are who you claim because you know a secret password
c. Need to consider potential for eavesdropping (problem with dumb terminals and cell

phone cloning)
d. How to get the password initially?

i. Hand it out? Probably hard to remember
ii. Type it at a root terminal? Potentially gives away a few seconds of root access
iii. Could set password equal to username initially, but that’s insecure

e. Password Guessing
i. Offline

1. Take the hashed version, try hashing dictionary words and comparing
2. Prevented by choosing good passwords

ii. Online
1. Trying different passwords at login.
2. Want to make this hard
3. Have an increasingly long delay after an incorrect password

f. Good Passwords
i. 20 random digits
ii. 11 characters of letters, digits, and punctuation
iii. 16 characters of random, pronounceable “words”
iv. A user=selected password has only about two useful bits per character, so need

32 characters to make it secure.
g. Storing Passwords

i. Store per node. Different passwords on different machines (not used anymore)
ii. Authentication Storage Server: Send a request to the server, which distributes

passwords as needed.
iii. Facilitator: Server just says “yes” or “no”
iv. Need to be sure the node requesting passwords is authentic

h. Trojan Horses: Pretend to be the regular login screen and intercept passwords
IV. Address-Based Authentication

a. .rhosts (rsh: remote shell)
b. /etc/hosts.equiv – trused hosts system wide
c. Threats: If you can break into one, you can break into all of them
d. Address spoofing: Getting harder to do

V. Authentication Token
a. Physical keys, magnetic cards
b. Smart cards

i. Challenge / response
ii. The card has some computational ability; can respond to challenges

c. Cryptographic Calculator: Displays the time encrypted; type that into a reader
d. All require a PIN to unlock it to prevent people from just copying the device

VI. Biometrics
a. Terminology

i. FAR: False Acceptance Rate. Worst type of error

ii. FRR: False Rejection. Inconvenient, but not security critical (can be reduced by
allowing more tries to get it right)

b. Want to eliminate “Unstable” population (always rejected)
c. Fingerprint

i. 1 to 5% FRR, 0.01 to 0.0001% FAR
ii. 2 seconds, 800 – 1203 bytes

d. Hand Geometry
i. 0.2 FRR, FAR
ii. Under three seconds, 9 bytes

e. Retinal Scans
f. Voice Recognition: Vulnerable to background noise and changes in voice due to things

like illness
g. Signatures: Not very reliable

VII. Lamport’s Hash
a. Want to be safe at login from both eavesdropping and from a compromised database
b. One idea

i. Server stores only the hash of the password
ii. Safe from reading from the database
iii. For this to work, user must send password and let the server hash it
iv. The bad guy can “hear” the password as it’s sent so he can pretend to be that

user.
v. Even if you send the hash over the network instead, now it’s just a plaintext

password since that’s what’s stored in the server anyway
c. Lamport’s Hash

i. Safe from both eavesdropping and a compromised database
ii. hashn(pwd) means to hash the password repeatedly (n times)
iii. For every user, store username, n, hashn(pwd)
iv. The workstation computes x = hashn – 1pwd) given the value of n provided by the

server
v. The server computes hash(x) and compares that to the database
vi. Then replace the password in the database with x and decrement n
vii. Observing x gains nothing for Trudy, since the next login will require one less

hash and the whole point is nobody can realistically calculate the “inverse” hash
d. A Problem

i. Trudy pretends to be the server, sends n = some low number
ii. The user will send hash24(pwd), perhaps, which Trudy can then use to compute

all hashes for n ≥ 25.
iii. IF the server says n = 125, just hash the thing 100 more times.

e. Include a Salt
i. Pick a random r = a salt value
ii. Compute hashn(p | r)
iii. Helps prevent dictionary attacks

f. When n gets small, just reset it and change the password
g. Pencil and Paper

i. Print out hash1(pwd), hash2(pwd), . on paper.
ii. Each time you login, type the password next on the list and cross it off
iii. This works with computers that can’t locally compute a hash (dumb terminals)
iv. It’s obviously vulnerable to somebody stealing the whole list

VIII. Mediated Authentication
a. Needham Schroeder

i. Alice sends N1, “I want Bob” to KDC
ii. KDC replies KA {N1, “Bob”, KAB, ticket}

1. N confirms that it’s really the KDC
2. “Bob” confirms who’s being sought
3. The fact that KAD is used confirms that Alice is the other party

4. Ticket = KB{KAB, “Alice”}
iii. A forwards the ticket to Bob (which only he can decode) and sends the challenge

KAB{N2}
iv. Bob replies with KAB{N2 – 1, N3} to prove he’s Bob
v. Alice replies with KAB{N3 – 1} to prove she’s Alice

b. Reflection Attack (in ECB mode)
i. Trudy sends ticket | KAB(N2) to Bob in ECB mode
ii. Bob replies KAB{N2 – 1} | KAB{N3} (which only works in ECB mode)
iii. Trudy needs to reply with KAB{N3 – 1}
iv. So start a new connection.

1. Trudy sends the ticket KAB{N3} to Bob
2. Bob replies with KAB{N3 – 1} | KAB{N4}
3. Now Trudy has the necessary reply for the original connection

v. The solution: don’t use ECB!
c. Limit Compromise

i. Trudy steals Alice’s key, then Alice changes it.
ii. Gather an old ticket.
iii. New algorithm

1. A sends to B: I want to talk to you.
2. B replies with KB{NB} where maybe NB is a timestamp
3. A sends to the KDC: I want Bob, N1, KB{NB}
4. KDC replies to A: KA{N1, “Alice”, KAB, KB{KAB, “Alice”, NB}
5. Then do the same challenge/response as before

IX. Kerberos V4
a. Authentications using secret key cryptosystems
b. Tickets

i. KDC sends KA{KAB}, KB{KAB, Alice} � the ticket
ii. Expires in 21 hours
iii. Every time you login, generate a new session key SA
iv. Gives a Ticket-Granting Ticket: KKDC{SA, network info, expiration, …}

where KKDC is a key known only to the KDC itself.
v. The workstation remembers SA, and the TGT (ticket-granting ticket)
vi. The workstation forgets the password

c. Configuration
i. The KDC uses a master key to encrypt the password database and TGTs
ii. Humans remember passwords; computers remember the key

d. Logging In
i. Send the username, get credentials
ii. KDC sends KA{SA, TGT}
iii. Use the password to decrypt KA{…}, then forget it.
iv. Now you have SA and a TGT to communicate with the KDC.
v. Use SA to generate new tickets when they expire.

e. Communicating with a Remote Node
i. Send a message to the KDC that you want to talk to Bob
ii. KDC generates KAB, pulls SA from the TGT.
iii. Generates a ticket for Bob: KB{Alice, KAB}
iv. The whole thing is encrypted with SA to send to Alice.
v. Alice can extract KAB and the ticket for Bob
vi. Use authenticator: KAB(timestamp), allow for maybe five minute skew for

clock synchronization

vii. Tickets in V4 contain the network address too so you can’t just eavesdrop
on an authentication and then login elsewhere if you’re being malicious

f. A Problem
i. If the KDC is down, nothing works
ii. Want to replicate the KDC to avoid failure
iii. Have a master KDC that accepts changes and replicated versions just

provide services
iv. Can exchange the master database in the clear, protected by a secure

hash
g. Realms

i. Multiple distinct KDCs
ii. Can’t create an arbitrary-length chain of KDCs.
iii. Can talk to α and everybody in that realm.
iv. If α can talk to β then you can talk to anybody in β’s realm too.
v. That’s all though – no further.

h. A New Mode of Operation
i. Plaintext Cipher Block Chaining (PCBC)
ii. Cn+1 = E(mn+1 ⊕ mn ⊕ cn)
iii. If you corrupt ci you’ll ruin all cj after that.
iv. Put some recognizable string at the end, so you could detect tampering
v. But: You can still swap two adjacent blocks

