
Benjamin Fenster 
  CS-266 (Ling) 
  19 December 2005 

Notes – Public Key Cryptography 

I. Mathematical Background 
a. Modular Addition 
b. Additive inverse: Number you add to x to get 0 
c. Modular Multiplication 

i. Multiply in the normal way, then apply mod 
ii. Multiplicative Inverse: Multiply to get 1 
iii. Not all x has a multiplicative inverse 
iv. Only 1, 3, 7, 9 when using mod 10 (they’re relatively prime to 10, or coprime) 
v. Euclid’s algorithm finds the inverse for a number 
vi. Public and Private keys are multiplicative inverses (but don’t know what they’re 

relatively prime TO) 
d. Totient Function 

i. φ(n) = number of numbers less than n that are relatively prime to n 
ii. φ(10) = 4 (they are {1, 3, 7, 9} ) 
iii. φ(7) = 6 (they are {1, 2, 3, 4, 5, 6} ) 
iv. φ(0) = 0 (not relatively prime to any number) 
v. If n is prime, φ(n) = n – 1 since all numbers < n are relatively prime to it (as in the 

case of 7 above). 
vi. If p and q are both prime and n = pq 

1. If you know how many AREN’T relatively prime, just subtract 
2. n = 2 * 5 = 10 
3. How many multiples of 2? 5 (0, 2, 4, 6, 8) 
4. How many multiples of 5? 2 (0, 5) 
5. How many multiples of 10? 1 (0) 
6. So φ(10) = 10 – 5 – 2 + 1 (add one because zero has been double-

counted) 
7. In general φ(pq) = pq – (p + q – 1) = (p – 1)(q – 1) 
8. pq – q – p + 1 

vii. Used in encrypting / decrypting 
viii. xφ(n)+1 = x mod n (more on this later 

e. Modular Exponentiation:  If n = 10, x1 = x5 = x9 = x13 
f. Euclidian Algorithm 

i. Multiplicative Inverse 
1. We want to find x such that 3 * x is = 1 mod 10 
2. How to find it? 
3. The obvious solution: Try 1, 2, 3, 4, 5, 6, 7, 8, and 9 
4. Complexity is θ(N) to find the inverse of a number mod N. 
5. Since N is really about 2512 that would take “forever” 

ii. Say n = 101, a = 38; find the multiplicative inverse 
iii. The inverse exists when GCD(38, 101) = 1 
iv. 101  = 2(38) + 25  (find quotient and remainder) 

So GCD(38, 101) = GCD(38, 25) 
38 = 1(25) + 13 
25 = 1(13) + 12 
13 = 1(12) + 1 
12 = 1(12) + 0 and GCD(1, 0) = 1 by default, so the GCD is indeed 1 

v. If you have a common divisor between 25 and 13 and you subtract them, the 
same number is a common divisor of the result 

vi. Now we know these numbers are relatively prime 
vii. Now start plugging in those numbers to compute the multiplicative inverse: 
viii. 1 = 13 – 1 * 12 

   = 13 – 1 * (25 – 1 * 13) = 2 * 23 – 1 = 25 



   = 2 * (38 – 1 * 25) – 1 * 25 = 2 * 38 – 3 * 25 
   = 2 * 38 – 3(101 – 2 * 38) = 8 * 38 – 3 * 101 

ix. So 8 * 38 – 3 * 101 = 1 mod 101, so (-3)(101) = 0 mod 101 
II. RSA 

a. Rivest, Shamir, Adleman 
b. Key length is variable 

i. Any length will work to encrypt and decrypt 
ii. 512 bit is common for security purposes 

c. Much slower than secret key cryptography 
d. Usually you’ll use RSA to establish a secret key and then fall back on that 
e. Basics 

i. Choose two large primes about 256 bits named p and q 
ii. Set n = pq (don’t ever reveal p and q) 
iii. It takes much more effort to factor a number than to multiply two numbers 
iv. Public Key 

1. Pick e relatively prime to φ(n) 
2. The public key is <e, n> 

v. Private Key 
1. d = (e mod φ(n))-1 
2. Private key is <d, n> 

vi. Encryption: m < n, c = me mod n 
vii. Decryption: m = cd mod n 
viii. Example 

1. Pick 7, 11, so n = 77 
2. φ(77) = 6 * 10 = 60 
3. Pick e relatively prime to 60, e = 13 
4. d = e mod 60 

13*d = 1 mod 60 
60 = 4(13) + 8 
13 = 1(8) + 5 
8 = 1(5) + 3 
5 = 1(3) + 2 
3 = 1(2) + 1 
 
1 = 3 – 1(2) = 3 – (5 – 1*3) = 2 * 3 – 5 
   = 2(8 – 5) – 1 * 5 = 2 * 8 – 3 * 5 = 2 * 8 – 3(13 – 1 * 8) 
   = 5 * 8 – 3 * 13 = 5(1 * 60 – 4 * 13) – 3 * 13 
   = 5 * 60 – 23 * 13 

5. So the multiplicative inverse of 13 mod 60 is -23 + 60 = 37 
6. d = 37 
7. So publish <13, 77> as the public key and keep <37, 77> private 

f. Why does RSA Work? 
i. n = pq, so φ(n) = (p – 1)(q – 1).  This would be really hard to figure out without 

knowing p and q 
ii. d * e = 1 mod φ(n).  For this to even be possible, e must be relatively prime to 

φ(n), so how can a bad guy figure out what d is without knowing φ(n) ? 
g. Why is it Secure?  It’s hard to factor a 512-bit number. 
h. Encryption: Just do xe 
i. Decryption: Do (xe)d = xed = x1 = x (because it’s all mod n) 

III. Exponentiating 
a. Hard to do exponentiation directly with large numbers 
b. Want to compute 12354 mod 678 
c. Can perform mod after every multiply 



d. 1232 = 15129 mod 678 = 213 
1233 = 123 * 213 = 26199 mod 678 = 435 
1234 = 123 * 435 = 53505 mod 678 = 621 

e. So the largest number we ever have is n2 – that’s still large, but much more manageable. 
f. Would still have to do 53 steps to get the answer (each step of divide/multiply) 
g. Binary Expansion of 54 = 110110 
h. Compute 1231 mod 678 = 123 
i. Compute 12311 mod 678 = (1231)2 * 1231 = 435 
j. Compute 123110 mod 678 = (12311)2 = … 
k. It now only takes two multiplications to get each step. 
l. Need to square the previous result.  Then, if the last digit is a 1, also multiply by another 

copy of 123. 
m. In base 10, this would mean: 

i. Multiply by 10 to get 87 -> 870 
ii. Multiply by 1239 if it’s 87 -> 879 
iii. We just do it in binary, not base 10. 

n. Called “Square and Multiply” 
o. For 512-bit numbers, just have 512 steps (instead of 2512) 

IV. Picking Large Primes 
a. Chance of picking a prime number at random is about 1 / ln 2 256 (to get a number of size 

2256. 
b. Picking 10-digit number = 1/23.  100-digits: 1/230. 
c. Need a primality testing algorithm 
d. Could just try dividing all primes less than the square root of n, but that’s still too much 

work. 
e. We’ll use a probabilistic algorithm that will “guarantee” that a number is prime with a 

certain probability 
f. Euler’s Theorem 

i. a is relatively prime to n, aφ(n) = 1 mod n 
ii. In RSA, xde =x mod n, de = 1 mod φ(n), de = 1 + kφ(n) for some k, x1+kφ(n) = x 

(xφ(n))k 
iii. This theorem is why RSA works 

g. Fermat’s Theorem 
i. If p is prime and 0 < a < p, ap-1 = 1 mod p 
ii. If p is prime then “something” is true.  If “something” is false, then p is not prime. 
iii. That’s the logic behind identifying primes! 
iv. ap-1 ≠ 1 mod p means p is not prime 
v. So pick a p, then see if ap-1 is equal to 1 mod p 
vi. May be equal to 1 by luck though, in which case you can conclude nothing. 
vii. If it’s not equal to 1 you know it’s composite. 
viii. There are some false negatives too: composites that pass the test.  Called 

Carmichael numbers 
h. Miller and Rabin Algorithm 

i. Goal: Compute an-1 mod n 
ii. Set 2bc = n – 1 (c must be odd) 
iii. Compute ac mod n 

a2^1c mod n 
a2^2c mod n 
a2^3c mod n 
… 
a2^bc mod n 

iv. These steps are done in the square and multiply algorithm (each step is 
squaring) 

v. Why does this help? 
1. If p is prime then x2 = 1 mod p has only two solutions for x: 1 or -1 



2. n = 15, x2 = 1 mod 15, x = 1, 14, 4, 11 
3. Remember it’s modulo arithmetic 
4. Since 4 * 4 = 1, 15 is not prime 

vi. If the last step is 1, but the previous step is not 1, then it’s not prime! (you 
squared a number and got 1 – that violates the theorem) 

vii. As you’re computing, see if each answer is equal to 1 or -1.  If not, you’re done: n 
is not prime 

viii. Proof of that Theorem 
1. x2 = 1 mod p, x2 – 1 = 0 mod p 
2. (x – 1)(x + 1) = p, so either (x – 1) or (x + 1) is a multiple of p 

ix. Implementation 
1. Pick add n, check n / {3, 5, 7, 11, …} 
2. Pick a random a and compute ac with n – 1 = 2bc 
3. Run test as described, and repeat 
4. Each step gives ½ probability 
5. There’s some research presently generating truly independent values of 

a (to compensate for pseudorandom qualities) 
6. Usually do about 30 values of a 

V. How to pick e 
a. Just needs to be relatively prime to (p – 1)(q – 1) 
b. Can test whether it’s relatively prime using Euclid’s algorithm 
c. Could generate p and q, then generate random e values until you find one that’s relatively 

prime 
d. Could also generate e3 first, then create (p – 1)(q – 1) to be relatively prime to e 
e. It’s desirable to control the value of e to make encryption/decryption easier 
f. Could use a small constant for e like 3 or 65537 (both are primes, so it’s easy to satisfy 

the condition that it’s relatively prime to (p – 1)(q – 1) 
i. Also , binary expansions are 11 and 100000000000000001 
ii. This makes square and multiply particularly easy 

g. Small d 
i. If d < n1/4 and q < p < 2q (they are close together), d can be found easily 
ii. Technique involves continuous fractions 
iii. Don’t even need to search one-by-one 

h. Small e 
i. Since e is published, there’s nothing necessarily wrong with having a small e 
ii. Message must be bigger than the cube root of n 
iii. An attack 

1. Broadcast a message to three people (B, C, D) each of whom has her 
own key 

2. Each message encrypted with <3, ni> 
3. Messages encrypt to m3 mod n1, m

3 mod n2, m
3 mod n3.  All different due 

to different values of n for each person 
4. A bad guy intercepts these messages 
5. m3 mod n1n2n3 (if n1, n2, n3 are all relatively prime – unlikely that three 

people chose any of the same primes, so they probably are) 
6. Since m < n1, m < n2, and m < n3, m

3 < n1n2n3. 
7. So m3 mod n1n2n3 = m3 so just take the ordinary cube root to obtain m 
8. The same attack would work for e = 65537 but would need to send the 

message to 65,537 people, and at that point it’s not really a secret 
anyway. 

9. One could easily prevent this attack by padding each message with 
something unique. 

VI. Chinese Remainder Theorem 
a. Have 1 mod 3, 2 mod 5, 4 mod 7 
b. It’s possible to find an x such that x = 1 mod 3, x = 2 mod 5, and x = 4 mod 7 
c. This is since 3, 5, and 7 are relatively prime 



d. Pick two 
i. Try to solve 1 mod 3 = x = 4 mod 7 
ii. x = 4 + 7y (4 + some integer multiple of y) 
iii. Substitute 4 + 7y = 1 mod 3 
iv. Then 1 + y = 1 mod 3 
v. y = 0 mod 3, y = 3z for some integer z 
vi. x = 4 + 7(3z) = 4 + 21z 
vii. x = 4 mod 21 

e. Bring in the last equation 
i. x = 4 mod 21 
ii. x = 2 mod 5 
iii. x = 2 + 5m for m = z 
iv. 2 + 5m = 4 mod 21 
v. 5m = 2 mod 21 
vi. Need the multiplicative inverse of 5 mod 21 (which we conveniently know how to 

calculate): it’s 17 
vii. so 17 * 5m = 2 * 17 mod 21 
viii. 85m = 34 mod 21, m = 13 mod 21 
ix. m = 13 + 21n  for some integer n 
x. x = 2 + 5(13 + 21n) = 2 + 65 + 105n 
xi. x = 67 mod 105 (since 105 is 7 * 5 * 3) 

VII. A Threat: Smooth Numbers 
a. A smooth number is the product of “small” primes (where small is defined in terms of 

modern computational ability) 
b. We want to sign message m 

i. Compute h = hash(m)Include s = hd mod n (where <d, n> is the private key) in 
the message. 

ii. Recipient computes se mod n, compares to hash(m) (where <e, n> is the 
sender’s public key) 

c. First, imagine we’re JUST sending h (and it’s known by everyone) 
d. I observe the signature of m1, m2 (signed by Sean), m1

d mod n, and m2
d mod n 

e. I could sign m1m2 as Sean (m1m2)
d mod n 

f. If m1/m2 is prime, I can fake signatures on that prime and its multiples 
g. Could pad with 0 on the right, but that just multiplies by 10 which is 2n5m (smooth!) 
h. Zeros on the left don’t change the value 
i. As a protocol designer you want a way to counter threats like this to maintain security 
j. In this case, consider padding. 

VIII. Diffie-Hellman Key Exchange 
a. DHKE can be used just to exchange a secret key 
b. Pick p = 512 bit (or so) prime; make it public 
c. Pick a random g, g < p and make that public 
d. Working on the “multiplicative subgroup generated by g” 
e. Two parties pick two secrets sa, sb (one each) 
f. Send gSa mod p, and gSb mod p 
g. Now person A knows Sa and gSb mod p, so can calculate gSaSb mod p.  Person B can do 

the same, given  Sb and gSa mod p.  A bad guy doesn’t have either secret, however, so 
can’t do that calculation. 

IX. Zero Knowledge Proofs 
a. With RSA 

i. Publish <e, n> 
ii. Challenger generates a challenge (m) randomly, encrypts with the public key, 

and sends that to the prover. 
iii. The prover sends back the decrypted m, which the challenger can verify. 
iv. Nobody else could decrypt it, so if the challenger gets back the original m the 

prover must really be who s/he claims 
v. Zero-knowledge since the challenger gains no information about d 



vi. Why have any other scheme? 
1. RSA is not terribly efficient.  Have (on average) 768 multiplies and 

divides plus modulus over a 512 bit number.  Uhg. 
2. Want a scheme that takes less work, but it may only do zero-knowledge 

proof if desired 
b. Graphs 

i. Generate graphs A and B, where A is isomorphic to B 
ii. Prover generates graphs G1, G2, …, G30 (some number of these) and sends 

them to the challenger. 
iii.  Challenger sends a random string of length 30 of As and Bs (AAAABBBABB) 
iv. Prover returns 30 permutations that map A or B to Gi 
v. If all challenges answered correctly, identity is proven 
vi. The prover knows how the graphs are constructed, so it’s easy to map.  If the 

challenger supplies graphs it’s “impossible” for anyone else to find even the 
original mapping (A to Gi) 

c. Fiat Shamir 
i. Publish (n, v) where n = pq for primes p and q, and  

1. Generate two random primes (like for RSA) and multiply 
2. Finding the square root mod n is hard 
3. Take a random s, set v = s2 mod n 

ii. Prover generates ri
2 mod n, …, r30

2 mod n (some number of random numbers) 
iii. Challenger again sends ABAABBB... 
iv. If the ith question is A, send back s*ri 
v. If the ith question is B, send back ri 
vi. Prover takes s*ri, squares it = s2ri

2 = vri
2 mod n (so the challenger can compare) 

vii. Why not have only A questions: 
1. Need to construct y such that the square root of yv is known 
2. First, generate a, then a2v-1, use y = a2v-1 
3. Send that for different values of a 
4. Then for answers to A, send ai 
5. Challenger computes ai

2, compares to (a2v-1)v 
6. But if you generate ri

2 that way, you don’t know ri.  Could ONLY answer 
A-type questions. 

viii. Do 30 multiplications to square numbers, then on average 15 more to reply to A 
challenges. 

ix. To verify the answers, would square 15 times (15 multiplies), then multiply vri
2 

(so 15 more) for A answers is 30.  For B would only need ri
2 so 15 multiplications. 

x. Total (for both parties) is about 90 multiplications and 90 divisions 
 


