Notes - Secret Key Cryptography

I. Introduction
a. Take some fixed-size block (broken off the message, maybe 128 bits worth) and a fixedsize key, and turn it into another block.
b. A longer key means more secure
c. Generic Block Encryption
i. One-to-one, so block sizes are the same (can reliably encrypt / decrypt)
ii. Keys need to be long enough to discourage a known-plaintext attack (needs to be longer by about 2 bits every year)
iii. Done with substitutions, permutations

1. Substitute: Swap any value with any other
2. Permute: Swap individual bits in the message
3. Combine
iv. Want the probability of possible outputs to be distributed randomly: if the opponent doesn't know the key there's no direct way to learn it.
v. Bit Spreading: A 1 in position 23 may result in a 1 in any position of the output
II. DES: Data Encryption Standard
a. Used 56 -bit keys originally, perhaps because the government could break that level of encryption
b. Keys are just eight ASCII characters
c. Blocks are 64 bits
d. Designed to be hard to attack with software, but easier to break with specialized hardware
e. It's not a big deal if it's slow in software, since legitimate users only need to do one encryption / decryption (instead of 2^{56} of them)
f. Algorithm
i. Initial Permutation
4. Swap the bits in a fixed (publicly known) way
5. Adds nothing to security
6. The point: it's easy to do in hardware but harder in software.
ii. Break the message into two 32 -bit pieces
iii. To each piece, apply a key
iv. Will do 16 rounds, applying a 48 -bit key to each (generated from the original 56bit key)
v. Then perform a final permutation that's the inverse of the initial permutation
g. How to Generate Keys
i. Keys are originally 64 bits with $1 / 8$ of those for parity
ii. We just discard the parity bits for the encryption
iii. Generate C_{0}, D_{0} by permutations of the 56 -bit key (each will be 28 bits)
iv. Will rotate left by 1 bit for round $1,2,9,16$ and by 2 bits for all other rounds. That way we end up using all 28 bits of each key
v. So we have $28+28$ bits; we only need $24+24$.
vi. Take a permutation of C_{i} for the left half of K_{i} and a permutation of D_{i} for the right half of K_{i}.
vii. Thus we've constructed a key for round i .
h. Rounds
i. Move the right half fo the left half $\left(L_{n+1}=R_{n}\right)$
ii. $\quad R_{n+1}=L_{n} \oplus m\left(R_{n}, K_{n}\right)$ where $m()$ is the "mangler function" (more later)
iii. $L_{n+1}=R_{n}$
i. Decryption
i. $R_{n+1}=L_{n} \oplus m\left(L_{n+1}, K_{n}\right)$
ii. $\quad R_{n+1} \oplus m\left(L_{n+1}, K_{n}\right)=L_{n} \oplus m\left(L_{n+1}, K_{n}\right) \oplus m\left(L_{n+1}, K_{n}\right)$
iii. The underlined part is all zeros, so $R_{n+1} \oplus m\left(L_{n+1}, K_{n}\right)=L_{n}$
iv. $L_{n}=R_{n+1} \oplus m\left(L_{n+1}, K_{n}\right)$
v. $R_{n}=L_{n+1}$
vi. Decryption is the same as encryption, but swapped
j. Mangler Function
i. Takes the 32-bit R_{n}, 48-bit key
ii. Doesn't affect the ability to encrypt/decrypt. This function just adds security
iii. Need to expand R_{n} to 48 bits by expanding each 4 bits into 6 .
iv. Each 4 bits borrows a bit from either side (shifting around the ends),
7. Have, say, $0100111010001101 \ldots$ to start
8. Becomes: 101001011101010001011010
v. Now we have the input and key the same length (each 48 bits)
vi. Have 8 chunks of 6 bits in each
vii. xor together for each chunk, then treat them separately
9. $R_{n} 101001011101010001011010$
10. $\mathrm{K}_{\mathrm{n}} 111111111111111111111111$
11. $101001 \oplus 111111=010110$
viii. Turn each six-bit chunk back into 4 using an S-box
12. Take 010110, output 1100
13. Basically a conversion "function" from 6-bit inputs into 4-bit outputs
ix. That yields a 32 -bit output (eight chunks of 4 bits)
x. Then apply a permutation to the result, that's the final mangler function result
k. Weak Keys
i. Some keys should be avoided (for $\mathrm{C}_{0}, \mathrm{D}_{0}$)
ii. 0000... 0000
iii. 1111... 1111
iv. 0101...
v. 1010...
III. IDEA: International Data Encryption Algorithm
a. 64-bit blocks, 128 -bit keys (more secure)
b. All primitive operations map two 16 -bit things into one 16 -bit thing. In examples here we'll use four-bit values to make it easier to write.
c. Three Operations
i. $\quad \mathrm{a} \oplus \mathrm{b}=\mathrm{c}$ (xor)
14. If you know any two, you can compute the third.
15. $\mathrm{b}=\mathrm{c} \oplus \mathrm{a}$
16. $a=b \oplus c$
17. $1100 \oplus 0100=1001$
18. $0110 \oplus 0110=0000$
19. With \oplus, any value is its own additive inverse
ii. $\quad a+b=c$
20. But $\bmod 2^{16}$ at the end (ignore the carrying bit)
21. $(a+b) \bmod 2^{16}=a+b$
22. If $a+b=c, b=c-a\left(\bmod 2^{16}\right)$
23. May get a negative difference, but will always have a positive remainder
24. $10+1=11$
25. $9+8=1$
iii. $a \otimes b=a \times b \bmod \left(2^{16}+1\right)$
26. Re-encode using the values 1 to 2^{16} since 0 is boring in multiplication
27. $9 \otimes 12=6$ (multiply 9 and 12 , divide by 17 , take the remainder)
28. $7 \otimes 14=13$
29. Zero is boring, so eliminate it, then encode 16 as 0 since it won't fit into the 4 bits available anyway.
30. $\mathrm{a} \otimes 5=11, \mathrm{a} \otimes 5 \otimes 7=11 \otimes 7, \mathrm{a}=9$
31. Given any number a, there's a unique inverse b such that $a \otimes b=1$
d. Per-Round Keys
i. 17 rounds, with nine of them odd and eight even
ii. Need a total of 52 keys (generated from the 128-bit key)
iii. Get eight keys just by breaking K into eight 16-bit pieces
iv. Now shift K by 25 bits (rotating around as you do)
v. Break that into 8 more 16 -bit keys.
vi. Shift by 25 again and repeat until all 52 keys are generated
vii. There will be four extra keys on the last set; just ignore them
e. Odd Rounds
i. Take four per-round keys $\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}, \mathrm{K}_{\mathrm{c}}, \mathrm{K}_{\mathrm{d}}$
ii. Split the 64-bit message into $X_{a}, X_{b}, X_{c}, X_{d}$
iii. $\quad X_{a}{ }^{\prime}=X_{a} \otimes K_{a}$
iv. $X_{b}{ }^{\prime}=X_{c}+K_{c}$
v. $X_{c}{ }^{\prime}=X_{b}+K_{b}$
vi. $\quad X_{d}{ }^{\prime}=X_{d} \otimes K_{d}$
vii. Can decrypt; just use the multiplicative / additive inverses
f. Even Rounds
i. Take two per-round keys $\mathrm{K}_{\mathrm{e}}, \mathrm{K}_{\mathrm{f}}$
ii. Compute $Y_{I N}=X_{A} \oplus X_{B}, Z_{I N}=X_{C} \oplus X_{D}$
iii. Send $Y_{I N}, Z_{\mathbb{I N}}, K_{e}, K_{f}$ into the mangler function
iv. $\quad X_{a}{ }^{\prime}=X_{a} \oplus Y_{\text {OUT }}$
v. $X_{b}{ }^{\prime}=X_{b} \oplus Y_{\text {OUT }}$
vi. $X_{c}=X_{c} \oplus Z_{\text {OUT }}$
vii. $\quad X_{d}=X_{d} \oplus Z_{\text {OUT }}$
g. Mangler Functions
i. $\quad Y_{\text {OUT }}=\left(\left(\mathrm{K}_{\mathrm{e}} \otimes \mathrm{Y}_{\mathrm{IN}}\right)+\mathrm{Z}_{\text {IN }}\right) \otimes \mathrm{K}_{\mathrm{f}}$
ii. $\quad Z_{\text {OUT }}=\left(K_{e} \otimes Y_{\text {IN }}\right)+Y_{\text {OUT }}$
IV. AES
a. History
i. Key length of 56 bits in DES doesn't seem secure enough for current technology
ii. Triple DES
32. Given a 112-bit key (2 keys, still 56 bits each)
33. Encrypt with K1, decrypt with K2, encrypt with K1
34. If you use double DES there's a fairly easy attack against it. Details later
35. Triple DES is much more secure, but is also much too slow.
iii. IDEA
36. Good, secure, efficient
37. Patented! Nobody wants to pay royalties
38. Want a royalty-free standard
iv. AES
39. NISI proposes something to replace DES
40. Makes a public call on 12 September 1997 to create a publicly-designed cryptosystem
41. People need to believe it's secure, so it should be done in public
42. Want a block length of 128 bits
43. Want key length to be variable: 128, 192, 256 bits
44. Want world-wide availability without royalties
45. 21 proposals submitted, 15 met the criteria 5 chosen as finalists
46. MARS, RC6, Rijndael, Serpent, Twofish
47. Rijndael became AES based on efficiencies, memory use, politics, et cetera
48. All five finalists were secure
b. Description
i. Both block length and key length are variable $(128, \ldots, 256)$
ii. More general than the requirements demanded
iii. The number of rounds N_{R} depends on the key length
iv. Given plaintext X (128 bits), create a state (4×4 array), put 1 byte in each cell
v. All operations happen on this state. For example: Round Key \oplus State (ADDROUNDKEY)
vi. For the first $\mathrm{N}_{\mathrm{R}}-1$ rounds, do:
49. SUBBYTES substitution
50. SHIFTROWS permutation
51. MIXCOLUMNS
52. ADDROUNDKEY
vii. On the last round, don't do MIXCOLUMNS
viii. Then the ciphertext is just what's left in the state.
c. Algorithm
i. Initialize state
ii. SUBBYTES: Use an S-box (specifically chosen for security)
iii. SHIFTROW: Shift the ith row left by i bytes (not bits!)
iv. MIXCOLUMN
53. Applied independently to each column
54. Lookup column of four bytes for each element in the original column
55. result ${ }_{1}=\mathrm{a}_{1} \oplus \mathrm{~b}_{4} \oplus \mathrm{c}_{3} \oplus \mathrm{~d}_{2}$
56. result ${ }_{2}=a_{2} \oplus b_{1} \oplus c_{4} \oplus d_{3}$
57. result $\mathrm{H}_{3}=\mathrm{a}_{3} \oplus \mathrm{~b}_{2} \oplus \mathrm{c}_{1} \oplus \mathrm{~d}_{4}$
58. result $_{4}=\mathrm{a}_{4} \oplus \mathrm{~b}_{3} \oplus \mathrm{c}_{2} \oplus \mathrm{~d}_{1}$
59. Now you have a new column
V. Modes of Operation
a. These algorithms only describe how to encrypt really short messages (we've been measuring in bits)
b. We need a way to break a large message up into pieces, encrypt the pieces, and put it back together to get the final ciphertext
c. Electronic Code Book (ECB)
i. Break the message into 64 -bit or 128 -bit chunks (depending on which algorithm you're using)
ii. Encrypt each chunk individually
iii. Encryption: $c_{i}=E_{k}\left(m_{i}\right)$ for all i
iv. Decryption: $m_{i}=D_{k}\left(c_{i}\right)$ for all i
v. So a given block of ciphertext is obtained by just encrypting the corresponding block of the message
vi. Very simple!
vii. The Rub: It's easy to change the message
60. Could swap two blocks and change the meaning, undetected by the recipient
61. In salary data, for example, could swap two salaries to your own benefit, and you wouldn't have to know the key to do it.
viii. Due to this problem, this scheme is rarely used.
ix. The benefit: Changing one bit only affects one block of the message (each is independent)
d. Cipher Block Chaining
i. Generate some $r_{1} r_{2} \ldots r_{k}$
ii. Encryption: $c_{i}=E_{k}\left(m_{i} \oplus r_{i}\right)$
iii. Decryption: $D_{k}\left(c_{i}\right) \oplus r_{i}=m_{i}$
iv. So we need to have access to these random r's in both steps.
v. This doubles the message length if r_{i} is generated randomly
vi. Let's generate r_{i} from the message:
62. $\mathrm{r}_{\mathrm{i}+1}=\mathrm{c}_{\mathrm{i}}$
63. Now there's no need to send r_{i} AND nobody can rearrange the blocks
64. Choose $r_{i}=$ IV (some initialization vector). You'll still need to send that much, but that's tiny compared to a long message.
vii. Set $\mathrm{c}_{0}=\mathrm{r}_{1}$ for notation purposes.
viii. Encryption: $c_{i}=E_{k}\left(m_{i} \oplus c_{i-1}\right)$
ix. Decryption: $m_{i}=D_{k}\left(c_{i}\right) \oplus c_{i-1}$
x. If one block is altered, the following block is affected too, but that effect does not propagate further since each block depends only on one other block.
xi. Since the IV is random, the encrypted message will be different each time. One cannot detect if the message has changed if it's sent twice.
xii. A Problem: Say you want to change m_{7} from 5 to 7 . You can't change c_{7} without knowing the key. You CAN change c_{6} by \oplus ing it with something (000000010) to turn what was 101_{2} to 111_{2}. This would screw up m_{6} in an unpredictable way though.
e. One-Time Pad
i. Genreate r_{i} randomly
ii. $\quad \mathrm{c}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} \oplus \mathrm{r}_{\mathrm{i}}$
iii. Note that there's no encryption function here; it's just \oplus ing.
iv. This is completely secure, though it's very hard to generate truly random numbers.
f. Output Feedback Mode
i. Generate IV $=\mathrm{b}_{0}$
ii. Generate $\mathrm{b}_{1}=\mathrm{E}_{\mathrm{k}}\left(\mathrm{b}_{0}\right)$ using a shared key
iii. Then $\mathrm{c}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} \oplus \mathrm{b}_{\mathrm{i}}$
iv. Decryption:
65. Receive c plus b_{0}
66. Generate all b_{i} using the same encryption
67. Then $m_{i}=c_{i} \oplus b_{i}$
68. No decryption function is needed
69. Since you don't need decryption, you could use a hash function.
v. A problem: If a bad guy knows both m_{i} and $c_{i} s /$ he can compute b_{i} easily without ever knowing the key (and then can create a new message)
vi. A benefit: Changing one bit in c_{i} affects only one bit of m_{i}
g. Cipher Feedback Mode
i. Want to generate b_{i} so we can do $c_{i}=m_{i} \oplus b_{i}$ again
ii. $b_{i+1}=E_{k}\left(C_{i}\right)$, with b_{1} random
iii. $\quad c_{i}=m_{i} \oplus b_{i}=m_{i} \oplus E_{k}\left(c_{i-1}\right)$
iv. $m_{i}=c_{i} \oplus E_{k}\left(c_{i-1}\right)$
h. Why is this strategy secure?
i. Assume b_{i} is generated randomly
ii. We want to know the probability of m_{i} being some message given $\mathrm{c}_{\mathrm{i}} \cdot \mathrm{P}\left(\mathrm{m}_{\mathrm{i}} \mid \mathrm{c}_{\mathrm{i}}\right)$
iii. Each b_{i} you choose leads to a different m_{i}
iv. $P\left(m_{i} \mid c_{i}\right)=P\left(b_{i}\right)=(1 / 2)^{64}$
v. As long as you don't know b_{i}, this is perfectly secure
vi. We want $P\left(m_{i}=000\right)=P\left(m_{i}=0001\right)=\ldots=P\left(m_{i}=1111\right)$
VI. Preserving Integrity
a. Want to compute something like a checksum from a message such that it can't be altered without knowing the key
b. Send only the last block of CBC (called CBC Residue)
c. Security and Integrity
i. Want to use CBC to encrypt and to generate a hash, since it requires a total of one pass
ii. Compute hash: one pass
iii. Then compute CBC (message | hash) and transmit it
iv. Using a hash function is more efficient than encrypting
VII. Multiple Encryption DES
a. Could be used for other cryptosystems
b. Have two keys
c. $\quad c=E_{k 1}\left(D_{k 2}\left(E_{k 1}(m)\right)\right)$
d. Why two keys? If we used the same key you'd just end up encrypting once in the end because of \oplus.
e. Why not encrypt with the same key twice? Because finding the key by brute force is just as hard that way as if you'd only done it once.
f. Why not just encrypt with k_{1}, then with k_{2}
i. Suppose the bad guy knows $\left(m_{1}, c_{2}\right),\left(m_{2}, c_{2}\right)$, and $\left(m_{3}, c_{3}\right)$
ii. For each possible key, encrypt m_{1} and decrypt c_{1}
iii. Find cases where the results are the same: those are potential matches.
iv. There are 2^{48} possible ($\mathrm{k}_{1}, \mathrm{k}_{2}$) pairs that encrypt this way, and even though it's not really feasible to brute force that it's still less secure than single DES
v. If there are two intermediate steps (by encrypting, decrypting, and encrypting again), this attack isn't possible
g. $C B C$
i. Could treat Triple DES as a single algorithm and do CBC at the end
ii. Could take the intermediate result and xor, but this means it's no longer protected from transmission errors the way it was before.
