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Notes – Secret Key Cryptography 

I. Introduction 
a. Take some fixed-size block (broken off the message, maybe 128 bits worth) and a fixed-

size key, and turn it into another block. 
b. A longer key means more secure 
c. Generic Block Encryption 

i. One-to-one, so block sizes are the same (can reliably encrypt / decrypt) 
ii. Keys need to be long enough to discourage a known-plaintext attack (needs to 

be longer by about 2 bits every year) 
iii. Done with substitutions, permutations 

1. Substitute: Swap any value with any other 
2. Permute: Swap individual bits in the message 
3. Combine 

iv. Want the probability of possible outputs to be distributed randomly: if the 
opponent doesn’t know the key there’s no direct way to learn it. 

v. Bit Spreading: A 1 in position 23 may result in a 1 in any position of the output 
II. DES: Data Encryption Standard 

a. Used 56-bit keys originally, perhaps because the government could break that level of 
encryption 

b. Keys are just eight ASCII characters 
c. Blocks are 64 bits 
d. Designed to be hard to attack with software, but easier to break with specialized 

hardware 
e. It’s not a big deal if it’s slow in software, since legitimate users only need to do one 

encryption / decryption (instead of 256 of them) 
f. Algorithm 

i. Initial Permutation 
1. Swap the bits in a fixed (publicly known) way 
2. Adds nothing to security 
3. The point: it’s easy to do in hardware but harder in software. 

ii. Break the message into two 32-bit pieces 
iii. To each piece, apply a key 
iv. Will do 16 rounds, applying a 48-bit key to each (generated from the original 56-

bit key) 
v. Then perform a final permutation that’s the inverse of the initial permutation 

g. How to Generate Keys 
i. Keys are originally 64 bits with 1/8 of those for parity 
ii. We just discard the parity bits for the encryption 
iii. Generate C0, D0 by permutations of the 56-bit key (each will be 28 bits) 
iv. Will rotate left by 1 bit for round 1, 2, 9, 16 and by 2 bits for all other rounds.  That 

way we end up using all 28 bits of each key 
v. So we have 28 + 28 bits; we only need 24 + 24. 
vi. Take a permutation of Ci for the left half of Ki and a permutation of Di for the right 

half of Ki.  
vii. Thus we’ve constructed a key for round i. 

h. Rounds 
i. Move the right half fo the left half (Ln+1 = Rn) 
ii. Rn + 1 = Ln ⊕ m(Rn, Kn)  where m() is the “mangler function” (more later) 
iii. Ln+1 = Rn 

i. Decryption 
i. Rn+1 = Ln ⊕ m(Ln+1, Kn) 
ii. Rn+1 ⊕ m(Ln+1, Kn) = Ln⊕ m(Ln+1, Kn) ⊕ m(Ln+1, Kn) 
iii. The underlined part is all zeros, so Rn+1 ⊕ m(Ln+1, Kn) = Ln 
iv. Ln = Rn+1 ⊕ m(Ln+1, Kn) 



v. Rn = Ln+1 
vi. Decryption is the same as encryption, but swapped 

j. Mangler Function 
i. Takes the 32-bit Rn, 48-bit key 
ii. Doesn’t affect the ability to encrypt/decrypt.  This function just adds security 
iii. Need to expand Rn to 48 bits by expanding each 4 bits into 6. 
iv. Each 4 bits borrows a bit from either side (shifting around the ends), 

1. Have, say, 0100 1110 1000 1101 …  to start 
2. Becomes: 101001 011101 010001 011010 

v. Now we have the input and key the same length (each 48 bits) 
vi. Have 8 chunks of 6 bits in each 
vii. xor together for each chunk, then treat them separately 

1. Rn 101001 011101 010001 011010 
2. Kn 111111 111111 111111 111111 
3. 101001 ⊕ 111111 = 010110  

viii. Turn each six-bit chunk back into 4 using an S-box 
1. Take 010110, output 1100 
2. Basically a conversion “function” from 6-bit inputs into 4-bit outputs 

ix. That yields a 32-bit output (eight chunks of 4 bits) 
x. Then apply a permutation to the result, that’s the final mangler function result 

k. Weak Keys 
i. Some keys should be avoided (for C0, D0) 
ii. 0000…0000 
iii. 1111…1111 
iv. 0101… 
v. 1010… 

III. IDEA: International Data Encryption Algorithm 
a. 64-bit blocks, 128-bit keys (more secure) 
b. All primitive operations map two 16-bit things into one 16-bit thing.  In examples here 

we’ll use four-bit values to make it easier to write. 
c. Three Operations 

i. a ⊕ b = c (xor) 
1. If you know any two, you can compute the third. 
2. b = c ⊕ a 
3. a = b ⊕ c 
4. 1100 ⊕ 0100 = 1001 
5. 0110 ⊕ 0110 = 0000 
6. With ⊕, any value is its own additive inverse 

ii. a + b = c 
1. But mod 216 at the end (ignore the carrying bit) 
2. (a + b) mod 216 = a + b 
3. If a + b = c, b = c – a (mod 216) 
4. May get a negative difference, but will always have a positive remainder 
5. 10 + 1 = 11 
6. 9 + 8 = 1 

iii. a ⊗ b = a x b mod (216 + 1) 
1. Re-encode using the values 1 to 216 since 0 is boring in multiplication 
2. 9 ⊗ 12 = 6 (multiply 9 and 12, divide by 17, take the remainder) 
3. 7 ⊗ 14 = 13 
4. Zero is boring, so eliminate it, then encode 16 as 0 since it won’t fit into 

the 4 bits available anyway. 
5. a ⊗5 = 11, a ⊗ 5 ⊗ 7 = 11 ⊗ 7, a = 9 
6. Given any number a, there’s a unique inverse b such that a ⊗ b = 1 

d. Per-Round Keys 
i. 17 rounds, with nine of them odd and eight even 



ii. Need a total of 52 keys (generated from the 128-bit key) 
iii. Get eight keys just by breaking K into eight 16-bit pieces 
iv. Now shift K by 25 bits (rotating around as you do) 
v. Break that into 8 more 16-bit keys. 
vi. Shift by 25 again and repeat until all 52 keys are generated 
vii. There will be four extra keys on the last set; just ignore them 

e. Odd Rounds 
i. Take four per-round keys Ka, Kb, Kc, Kd 
ii. Split the 64-bit message into Xa, Xb, Xc, Xd 
iii. Xa’ = Xa⊗ Ka 
iv. Xb’ = Xc + Kc 
v. Xc’ = Xb + Kb 
vi. Xd’ = Xd ⊗ Kd 
vii. Can decrypt; just use the multiplicative / additive inverses 

f. Even Rounds 
i. Take two per-round keys Ke, Kf 
ii. Compute YIN = XA ⊕ XB, ZIN = XC ⊕ XD 
iii. Send YIN, ZIN, Ke, Kf into the mangler function 
iv. Xa’ = Xa ⊕ YOUT 
v. Xb’ = Xb ⊕ YOUT 
vi. Xc = Xc ⊕ ZOUT 
vii. Xd = Xd ⊕ ZOUT 

g. Mangler Functions 
i. YOUT = ((Ke ⊗ YIN) + ZIN) ⊗ Kf 
ii. ZOUT = (Ke ⊗ YIN) + YOUT 

IV. AES 
a. History 

i. Key length of 56 bits in DES doesn’t seem secure enough for current technology 
ii. Triple DES 

1. Given a 112-bit key (2 keys, still 56 bits each) 
2. Encrypt with K1, decrypt with K2, encrypt with K1 
3. If you use double DES there’s a fairly easy attack against it.  Details later 
4. Triple DES is much more secure, but is also much too slow. 

iii. IDEA 
1. Good, secure, efficient 
2. Patented!  Nobody wants to pay royalties 
3. Want a royalty-free standard 

iv. AES 
1. NISI proposes something to replace DES 
2. Makes a public call on 12 September 1997 to create a publicly-designed 

cryptosystem 
3. People need to believe it’s secure, so it should be done in public 
4. Want a block length of 128 bits 
5. Want key length to be variable: 128, 192, 256 bits 
6. Want world-wide availability without royalties 
7. 21 proposals submitted, 15 met the criteria 5 chosen as finalists 
8. MARS, RC6, Rijndael, Serpent, Twofish 
9. Rijndael became AES based on efficiencies, memory use, politics, et 

cetera 
10. All five finalists were secure 

b. Description 
i. Both block length and key length are variable (128, …, 256) 
ii. More general than the requirements demanded 
iii. The number of rounds NR depends on the key length 
iv. Given plaintext X (128 bits), create a state (4 x 4 array), put 1 byte in each cell 



v. All operations happen on this state.  For example: Round Key ⊕ State 
(ADDROUNDKEY) 

vi. For the first NR – 1 rounds, do: 
1. SUBBYTES substitution 
2. SHIFTROWS permutation 
3. MIXCOLUMNS 
4. ADDROUNDKEY 

vii. On the last round, don’t do MIXCOLUMNS 
viii. Then the ciphertext is just what’s left in the state. 

c. Algorithm 
i. Initialize state 
ii. SUBBYTES: Use an S-box (specifically chosen for security) 
iii. SHIFTROW: Shift the ith row left by i bytes (not bits!) 
iv. MIXCOLUMN 

1. Applied independently to each column 
2. Lookup column of four bytes for each element in the original column 
3. result1 = a1 ⊕ b4 ⊕ c3 ⊕ d2  
4. result2 = a2 ⊕ b1 ⊕ c4 ⊕ d3 
5. result3 = a3 ⊕ b2 ⊕ c1 ⊕ d4 
6. result4 = a4 ⊕ b3 ⊕ c2 ⊕ d1 
7. Now you have a new column 

V. Modes of Operation 
a. These algorithms only describe how to encrypt really short messages (we’ve been 

measuring in bits) 
b. We need a way to break a large message up into pieces, encrypt the pieces, and put it 

back together to get the final ciphertext 
c. Electronic Code Book (ECB) 

i. Break the message into 64-bit or 128-bit chunks (depending on which algorithm 
you’re using) 

ii. Encrypt each chunk individually 
iii. Encryption: ci = Ek(mi) for all i 
iv. Decryption: mi = Dk(ci) for all i 
v. So a given block of ciphertext is obtained by just encrypting the corresponding 

block of the message 
vi. Very simple! 
vii. The Rub: It’s easy to change the message 

1. Could swap two blocks and change the meaning, undetected by the 
recipient 

2. In salary data, for example, could swap two salaries to your own benefit, 
and you wouldn’t have to know the key to do it. 

viii. Due to this problem, this scheme is rarely used. 
ix. The benefit: Changing one bit only affects one block of the message (each is 

independent) 
d. Cipher Block Chaining 

i. Generate some r1r2…rk 
ii. Encryption: ci = Ek(mi ⊕ ri) 
iii. Decryption: Dk(ci) ⊕ ri = mi 
iv. So we need to have access to these random ri’s in both steps. 
v. This doubles the message length if ri is generated randomly 
vi. Let’s generate ri from the message: 

1. ri+1 = ci 
2. Now there’s no need to send ri AND nobody can rearrange the blocks 
3. Choose ri= IV (some initialization vector).  You’ll still need to send that 

much, but that’s tiny compared to a long message. 
vii. Set c0= r1 for notation purposes. 



viii. Encryption: ci= Ek(mi ⊕ ci-1) 
ix. Decryption: mi = Dk(ci) ⊕ ci-1 
x. If one block is altered, the following block is affected too, but that effect does not 

propagate further since each block depends only on one other block. 
xi. Since the IV is random, the encrypted message will be different each time.  One 

cannot detect if the message has changed if it’s sent twice. 
xii. A Problem: Say you want to change m7 from 5 to 7.  You can’t change c7 without 

knowing the key.  You CAN change c6 by ⊕ing it with something (000000010) to 
turn what was 1012 to 1112.  This would screw up m6 in an unpredictable way 
though. 

e. One-Time Pad 
i. Genreate ri randomly 
ii. ci= mi ⊕ ri 
iii. Note that there’s no encryption function here; it’s just ⊕ing. 
iv. This is completely secure, though it’s very hard to generate truly random 

numbers. 
f. Output Feedback Mode 

i. Generate IV = b0 
ii. Generate b1 = Ek(b0) using a shared key 
iii. Then ci = mi ⊕ bi 
iv. Decryption: 

1. Receive c plus b0 
2. Generate all bi using the same encryption 
3. Then mi = ci ⊕ bi 
4. No decryption function is needed 
5. Since you don’t need decryption, you could use a hash function. 

v. A problem: If a bad guy knows both mi and ci s/he can compute bi easily without 
ever knowing the key (and then can create a new message) 

vi. A benefit: Changing one bit in ci affects only one bit of mi 
g. Cipher Feedback Mode 

i. Want to generate bi so we can do ci= mi ⊕ bi again 
ii. bi+1 = Ek(Ci), with b1 random 
iii. ci = mi ⊕ bi = mi ⊕ Ek(ci-1) 
iv. mi = ci ⊕ Ek(ci-1) 

h. Why is this strategy secure? 
i. Assume bi is generated randomly 
ii. We want to know the probability of mi being some message given ci. P(mi | ci) 
iii. Each bi you choose leads to a different mi 
iv. P(mi | ci) = P(bi) = (1/2)

64  
v. As long as you don’t know bi, this is perfectly secure 
vi. We want P(mi = 000) = P(mi = 0001) = … = P(mi = 1111) 

VI. Preserving Integrity 
a. Want to compute something like a checksum from a message such that it can’t be altered 

without knowing the key 
b. Send only the last block of CBC (called CBC Residue) 
c. Security and Integrity 

i. Want to use CBC to encrypt and to generate a hash, since it requires a total of 
one pass 

ii. Compute hash: one pass 
iii. Then compute CBC (message | hash) and transmit it 
iv. Using a hash function is more efficient than encrypting 

VII. Multiple Encryption DES 
a. Could be used for other cryptosystems 
b. Have two keys 
c. c = Ek1(Dk2(Ek1(m))) 



d. Why two keys?  If we used the same key you’d just end up encrypting once in the end 
because of ⊕. 

e. Why not encrypt with the same key twice?  Because finding the key by brute force is just 
as hard that way as if you’d only done it once. 

f. Why not just encrypt with k1, then with k2 
i. Suppose the bad guy knows (m1, c2), (m2, c2), and (m3, c3) 
ii. For each possible key, encrypt m1 and decrypt c1 
iii. Find cases where the results are the same: those are potential matches. 
iv. There are 248 possible (k1, k2) pairs that encrypt this way, and even though it’s 

not really feasible to brute force that it’s still less secure than single DES 
v. If there are two intermediate steps (by encrypting, decrypting, and encrypting 

again), this attack isn’t possible 
g. CBC 

i. Could treat Triple DES as a single algorithm and do CBC at the end 
ii. Could take the intermediate result and xor, but this means it’s no longer 

protected from transmission errors the way it was before.  


