

Notes – Introduction

- I. Four Interpretations
 - a. Model how human brains *think*
 - b. Get computers to act like humans
 - c. Think in a rational way (the goal in CS-251)
 - d. Act rationally
- II. Turing Test
 - a. Is a machine intelligent?
 - b. Prediction: By 2000, a machine could have a 30% chance of fooling a layperson for five minutes (this prediction made by Turing when "creating" the test)
 - c. Components
 - i. Knowledge
 - ii. Reasoning: We may both know Algebra, but how fast can we each solve a problem?
 - iii. Language
 - iv. Understanding
 - v. Machine Learning
 - d. Problems
 - i. Not reproducible (will give the same answers to the same questions every time)
 - ii. Not constructive
 - iii. Not amenable to mathematical analysis
 - e. Cognitive Science (thinking humanly)
 - i. Studying how humans think
 - ii. Cognitive neuroscience: More about the hardware of the brain
 - f. Thinking Rationally
 - i. All programming languages we know are prescriptive.
 - ii. We're working toward *descriptive* languages in this class (Prolog)
 - iii. Problems: Not all intelligent behavior is determined by logical deliberation.
 - g. Acting Rationally: Do the "right thing" (maximize goal achievement given all available information)
- III. Rational Agents
 - a. This is the rest of the course.
 - b. An agent is a function from "percept histories" (i.e. all known information) to actions.
 - c. For different environments and tasks, find the agent with the best performance, since not all information is known.
 - d. But: Computational limitations make considering *all* possibilities infeasible
 - e. Intelligence Consists Of
 - i. Symbolic inference
 - 1. If you're too proud, you'll fail
 - 2. Failure is the mother of success
 - 3. Therefore: If you're proud, you'll succeed
 - ii. Heuristics
 - f. Human vs. Machine Intelligence
 - i. Machines have an advantage: speed
 - ii. Al Cannot yet match humans in emotion and creativity
- IV. Agents and Environments
 - a. Environment generates percepts
 - b. Received by sensors
 - c. Agent function maps percept history to actions
 - d. Actuators then affect the environment
 - e. Example: Vacuum Cleaner World
 - i. Have two squares of carpet and want to build a vacuum agent.
 - ii. Percepts: Location of the vacuum, status/contents of that location (Square B, Dirty)

- iii. Actions: Move left, move right, suck, No-Op.
- iv. Sequence (Precept Sequence) -> Action
 - 1. [A, Clean] -> Right
 - 2. [A, Dirty] -> Suck
 - 3. [A, Clean], [A, Clean] -> Right
 - 4. Is this the *right* function to use? Hard to say.
- f. Rationality
 - i. Need a performance measure to evaluate the environment sequence
 - ii. "Rational" does not mean omniscient/clairvoyant/successful
 - iii. Rational does mean explorative (try to find good solutions), learning, autonomous
- g. PEAS: Four components of agent design
 - i. Performance Measure
 - ii. Environment (factors to consider)
 - iii. Activators
 - iv. Sensors
 - v. Example: Automated Taxi
 - 1. P: Profit, comfort, safety
 - 2. E: Streets, freeways, traffic, weather
 - 3. A: Steering, acceleration/deceleration, horn
 - 4. S: GPS, video, accelerometer
 - vi. Example: Internet Shopping
 - 1. P: Price, search time
 - 2. E: Terminal, Internet connection speed
 - 3. A: Mouse, keyboard
 - 4. S: Terminal, browser
- h. Environment Types
 - i. Observable: Can you observe (know) the environment? Can you get a clear picture of everything in the environment?
 - ii. Deterministic: Given the same set of information twice, will you make the same choices twice?
 - iii. Episodic (or sequential): Sequential means taking a series of steps (e.g. I'm hungry; make one decision)
 - iv. Static: Information doesn't change (vs. dynamic)
 - v. Discrete: Values are discrete or continuous
 - vi. Single-Agent
 - vii. Environment type largely determines agent design
- i. Agent Types
 - i. Simple reflex agents: respond to the environment only. Use a set of rules (a lookup table)
 - ii. Reflex with states (same as above, but use a different set of rules depending on the agent's state)
 - iii. Goal-based agents: Reach a goal through a sequence of actions
 - iv. Utility-based: The best way of reaching a goal
 - v. Any type of agent can also be *learning*, so it modifies its behavior over time