
Benjamin Fenster
 CS-205 (Damon)
 21 December 2004

Open Source

I. What is It?
a. Source Freely Available
b. If it doesn’t work, anyone can change it
c. Eric Raymond (big champion)

i. Cathedral and Bazaar
ii. Bazaar – wide range of approaches; get huge collection of “stuff” you can use for

a program (take what you need)
d. Well-Known Open Source Software

i. Utilities
1. Linux – most famous
2. emacs, gcc
3. Apache – affects people the most, though they probably don’t know it
4. fetchmail

ii. Enterprise Software: MySQL, DFS filesystem, Websphere Studio
iii. Applications: Star Office, gimp
iv. Older games get re-released as open source once all the code’s been rewritten

II. How it Works
a. Release Early, Release Often
b. Early release gets people interested but shows that it still needs work.
c. If it’s too polished on the initial release nobody will bother working on it.
d. Users make changes; submit them. Release with changes often.
e. Contributors

i. Up to 1000s, usually on a few (10 to 15).
ii. Almost exclusively part-time / volunteer

III. Maintenance
a. Bug Fixes. Requested Enhancements. Developer Originated
b. Software may mutate drastically from the original intent as people suggest changes

IV. Don’ts
a. Forking Projects. Splits developer base in half. Generates confusion about versions

i. Good when you really need a specialized version.
ii. Sometimes merged back in later; sometimes stays a fork.

b. Distributing Rogue Versions
i. Make sure anyone running it knows it’s different.
ii. Once you start releasing a Rogue version you’re really forking the project

c. Never remove credit!
d. Won’t be taken to court over these things but there’s major social pressure

V. Organization
a. Usually have a maintainer coordinating changes
b. Initially the maintainer is the original developer, who can then appoint a successor
c. Projects can get orphaned. If nobody’s doing anything on a project, adopt it!
d. Good for many reasons to work on open source projects as a student. Build a reputation!
e. Committee

i. Big projects (Linux, Apache, Perl)
ii. Hierarchical (like Linux, with Torvalds at the top, then specialists below)
iii. Committee with Specialists (Apache)
iv. Rotating Committee Leaders (Perl, possibly)

VI. Overhead
a. Brooks’ Problem: Overhead increases O(N2) by the number of developers
b. Debugging / testing distributes pretty well. Someone will find the problem and announce

it. Then someone will solve it.
c. It’s inefficient in that many people are doing the same work, but very productive!

VII. Licensing
a. GNU: Once open source, Always open source. Can’t close it off.

b. Berkeley: Can turn into closed source later
c. Sun Community: Cannot fork. Takes scrutiny, strangely. It’s really bad to fork a project,

but apparently it’s even worse to legally forbid it.
VIII. Why Bother?

a. Seems really weird to have people working for free.
b. One answer: it’s fun for developers!
c. Another: want to gain favor with who’s in control
d. Raymond: Time is in excess right now (developer time). “Gift Culture” (vs Control vs.

Exchange). Basic economics.
e. Owners

i. Get attention! Mozilla was the first big project to go from commercial to open
source.

ii. Get free labor!
iii. Get confidence from the customer

1. Big customers might get closed source software in escrow in case the
vendor dies (so the customer can take over the project or give it to
another developer).

2. With open source, customer knows the source is always available
3. Also see boost in reliability

IX. Issues
a. What programs work?

i. No trade secrets.
ii. Needs low or no sale value

b. Microsoft’s Halloween Document
i. Open source can’t innovate
ii. True in many ways – open source trails in many areas

c. What will Get Developed?
i. Need programmer interest
ii. Targeted at novices and kids – issues there

