
Benjamin Fenster
 CS-205 (Damon)
 21 December 2004

Productization

I. Documentation Group
a. Not usually considered part of the development group
b. Technical people with a user perspective
c. Very involved in meetings, development process
d. Internal

i. Starts with comments
ii. Usually written by the developer. Sometimes when releasing source (or object

code), someone will rewrite for clarity
iii. Want something for every function, something interesting about structure of data
iv. Includes other documentation: technical documents
v. System / code designs
vi. Data file documentation (format)
vii. Important: Update these when you’re finished to reflect the reality. Makes a nice

ramp down phase at the end of the project
viii. Include rationale for “paths not taken” (or you’ll just have the same arguments all

over again)
e. Customer Documentation

i. Audience, Audience, Audience!
ii. Don’t write things they already know (their business model, for example)
iii. Do write lots of stuff about what they don’t know (including “obvious” product

features – they’re not obvious to the customer yet!)
f. Deliverables

i. “Read me First” – No more than one page! People won’t read anything that’s too
long, so find the critical stuff the user needs to know.

ii. Installation Guide. How to upgrade, how to configure the many, many options
iii. User Manual, Operator Manual
iv. System Guide
v. Troubleshooting Guide (appendix, often)
vi. Tutorial (online)
vii. Programmer’s Guide

g. Other Responsibilities
i. Online help, error messages (make them clear)
ii. May provide training for customers

II. Release Engineering
a. Write “code” (make, shell scripts)
b. Responsible for creating the Golden Master (building it and deciding when it’s done)
c. Versions

i. Be able to tell what version the customer is running (“About” or command line)
ii. Customer Support needs to know to answer questions
iii. Need to know not only base release, but what patches are installed too
iv. For any given version, Release Engineering can produce the entire source code

d. Writes Installers
i. Usually have tool to generate the installer that’s dominant for each platform
ii. May be really simple; typically not
iii. Are prerequisites in place? (e.g. JVM)
iv. Copy needed files based on the prerequisites found
v. Update database (registry, “desktop database”, et cetera)

e. Path Releases
i. Rolling Patch: Assume they’ve got everything up to a point, then add one more.

This limits the number of possible configurations to O(N)
ii. Selective Patches: Install only the patches you want. Gives O(2N) combinations
iii. Customers prefer Selective Patches since they know some patches may actually

make things worse and some just aren’t applicable

iv. Testing
1. For cumulative: Just test each version
2. For selective, test all required patches; will miss many combinations

III. Customer Support
a. Can charge for customer support, so can milk for revenue years after all development

has stopped.
b. How-To Questions

i. Range from very simple to very complex
ii. Simple ones are intolerably dull
iii. Complex ones border on consulting

c. Bug-Handling Questions
d. Levels

i. Front Line. Run away! Not knowledge based. Plug search terms into the
computer database and read the answer back to the customer

ii. Mid Level. Some technical knowledge required (not already in the computer, but
still pretty basic). Figure it out; add to the computer database

iii. Back Line. Former or would-be developers. Paid about the same as developers.
Solve problems based on code – really complex problems

e. Communication
i. Phone, e-mail, web (online chat growing)
ii. Lots of good search technologies come from Customer Support

IV. Maintenance
a. Once you’re done with a release, keep working
b. Add features you wanted. Fix bugs.
c. Also rewriting code if it’s become fragile
d. Forward Development: New features, recoding, major bug fixes
e. Maintenance Group: Bug fixes (simple)
f. Expensive!

i. Code gets very fragile (you designed for change but you’re never dead on)
ii. Understanding of the code declines

g. Need to improve documentation.
h. Need to retain developers.
i. Need good communication between maintenance and forward developers
j. Next Iteration: Support feeds back into the requirements for the next generation

