
Benjamin Fenster
 CS-201 (Arslan)
 14 November 2005

Notes – Process Synchronization

I. Introduction
a. If processes share no resources then you can schedule them by any policy that meets

the system’s needs.
b. When processes share resources, concurrent access to data may cause inconsistency.
c. Example

i. Have a bounded buffer; one producer, one consumer.
ii. Producer waits ‘till the buffer is not full, inserts items at [in % BUFFER_SIZE]
iii. Consumer waits until the buffer isn’t empty, removes from [out mod

BUFFER_SIZE]
iv. ‘counter’ is incremented /decremented as items are inserted / removed

1. In machine language counter++; may be
register1 = counter
register1 = register1 + 1
counter = register

2. counter--; may be:
register2 = counter
register2 = register2 – 1
counter = register

v. Now there’s a problem! What if the process is interrupted in the middle of those
three steps?

1. May have counter = 4, register1 becomes 5
2. Now switch to the consumer process.
3. Counter is still 4, so register2 becomes 3.
4. Store 3 back in counter.
5. Now return to the producer and store 5 back in counter.

d. We need a way to describe which parts of a process must be synchronized.
e. The example is called a race condition: several processes are accessing the same

memory, so the final value depends on whoever gets there first.
II. Critical Section

a. Assume there are n processes; each has a part that accesses shared data
b. That part of the code is called the critical section
c. Constraints on an Ideal Solution

i. Mutual Exclusion
1. If a process is executing in its critical section, no other process can

execute in its critical section.
2. Thus only one process can access the shared data

ii. Progress
1. If no process is in its critical section, but one wants to start, it should be

allowed.
2. Execution cannot be indefinitely postponed.

iii. Bounded Waiting
1. When a process asks to execute in its critical section, there must be a

bound for the number of times other processes will execute in their
critical sections.

2. There is no assumption about the relative speed of processes – one
process may take much longer or shorter.

III. Candidate Solutions
a. Consider the case with only two processes: p1, p2

i. do { entry section; critical section; exit section; remainder; } while (true);
ii. p1 do {

wait (turn != 1);
critical section
turn = 2

remainder section
} while (true);

iii. (With p2 symmetrical)
iv. Mutual exclusion is satisfied.
v. Progress is not. p1 may be postponed indefinitely until p2 finishes.
vi. This candidate solution fails.

b. Another candidate
i.

do { flag[i] = true;
 while (flag[j]);

critical section
flag[i] = false;
remainder section

} while (true);

ii. Could have a deadlock if both flag[1], flag[2] = true.
iii. Mutual exclusion is satisfied.
iv. Progress is not (could deadlock).
v. Solution fails

c. Another candidate
i.

do { flag[i] = true;
 turn = j;
 while (flag[j] && turn == j);

critical section
flag[i] = false;
remainder section

} while (true);

ii. Mutual exclusion is still satisfied
iii. Avoids deadlocks now sine ‘turn’ can be only one value
iv. Proving that this complies requires considering all possible scenarios (stating

loop invariants, et cetera
v. We won’t formally prove it, but get the idea
vi. For multiple (more than two) processes, Baker’s Algorithm

1. Wait as long as another process is taking a ticket or if any process has a
lower ticket number

2. (Simulating a bakery or deli line where everybody has a number and the
next person is served)

3.
do { choosing[i] = true;

number[i] = max(number[0], ...,
number[n-1]) + 1;

choosing[i] = false;
for (j = 0; j < n; j++)
 while (choosing[j]);
 while (number[j] != 0

&& (number[j] < number[i]
|| (number[j]==number[i] && i>=j)

);
}
critical section
number[i] = 0;
remainder section;

} while (true);
d. NB: In reality these algorithms are not implemented in code but with hardware support.

e. Another Solution
i. Uses hardware support
ii.

boolean TestAndSet (boolean& target) {
 boolean rv = target;

target = true;
return rv;

}
iii.

 P i : do while (TestAndSet(lock));
 critical section;
 lock = false;

remainder section;
 }

iv. Hardware guarantees that the entire TestAndSet() function will be evaluated
atomically.

v. TestAndSet() means, “I want to use the critical section, so set the lock.” If there
was already a lock, returns true, meaning “wait.”

f. Another Solution
i. Also uses an atomic function
ii.

void swap (boolean& a, boolean& b) {
 boolean temp = a; a = b; b = temp;
}

iii.
Pi : do key = true;
 while (key == true) swap (lock, key);
 critical section;
 lock = false;
}

iv. If the lock was true, key stays true (lock stays true).
v. If the lock was false, key = false, lock = true

g. The Rub
i. These are all very simple solutions, but processes spend a lot of CPU time just

waiting.
ii. Since the process that’s executing its critical section knows when it finishes, it

could notify that it’s done.
IV. Semaphores

a. A new data structure
b. Semaphore

i. s: an integer value
ii. wait(s): while (s <= 0) do no-op; s--;
iii. signal(s): s++
iv. Both wait() and signal() are atomic.

c. How to Use: do { wait(mutex); critical section; signal(mutex); remainder section; }
d. Operations would actually be implemented differently:

i. wait(s): s.value--; if (value < 0) { /* add this value to the waiting list */ block; }
ii. block; is a syscall that blocks execution
iii. signal(s): s.value++; if (value <= 0) { /* remove p from waiting list */ wakeup p; }

e. Example
i. We have many producers and consumers using a bounded buffer (of size n)
ii. Have semaphores empty = n, mutex = 1, full = 0
iii. Producer p:

do {
 Produce an item in ‘nextp’

wait(empty);

wait(mutex);
add nextp to the buffer
signal(mutex)

signal(full);

} while (true);
iv. Consumer c:

do {
wait(full);

wait(mutex);
remove next from the buffer
signal(mutex)

signal(empty);

Consume nextc

} while (true);

v. empty starts out at n, so it’ll only hit zero when there are zero empty slots.
vi. full starts out at 0 and can increment up to n.

f. Two Kinds of Sempahores:
i. Counting: What we just used
ii. Binary: Can only be 0 or 1 (duh)

1. Can implement counting semaphores using binary semaphores by
having a binary semaphore to control access to an ordinary counting
variable.

V. Deadlocks
a. Introduction

i. P0 says: wait(s); wait(q); … signal(s); signal(q);
ii. P1 says: wait(q); wait(s); … signal(q); signal(s);
iii. Ve haff a deadlock, kiptin!
iv. Definition of Deadlock: Two or more processes are waiting indefinitely for an

event that can be caused only by one of the waiting processes.
b. Dining Philosophers Problem

i. Five philosophers sit at a circular table with one chopstick between each pair.
ii. To eat, a philosopher needs both chopsticks (i.e. one from each side)
iii. How can we synchronize these processes?
iv. Pi : do {

wait(chopstick[i]); wait(chopstick[(i+1) % 5]);
eat;
signal(chopstick[i]); signal(chopstick[(i+1) % 5]);
think; philosophize;

} while (true);
v. Again, a deadlock is possible. Each philosopher gets one chopstick and waits for

the second (which will be held forever by her neighbor).
vi. We want a deadlock-free solution.
vii. Perhaps odd-numbered philosophers might reach for the left chopstick first, then

the right (while even-numbered philosophers would do the opposite). Presto!
c. Monitors

i. Programming Language supported construct
ii. Skeleton: monitor monitor-name{

shared variable declarations
procedure body P i (…) { }
other procedure bodies

void init() { }
}

iii. Processes that want to execute inside the monitor are queued
iv. Conditions:

1. Two operations: wait() and signal()
2. wait: Process executing x.wait() enters a queue waiting for condition x

and is suspended until someone does x.signal().
v. Example: Producer / consumer

1. Defined inside a ProducerConsumer monitor:
condition full, empty;
integer count;
procedure insert(item : integer) begin
 if count = N then full.wait()

insert_item(item) // defined somewhere
count = count + 1
if count = 1 then empty.signal()

end
function remove() : integer begin
 if count = 0 then empty.wait()
 remove = remove_item() // defined somewhere
 count = count – 1
 if count = N – 1 then full.signal()
end
count = 0

2. Producer:
begin
 while true do begin
 item = produce_item
 ProducerConsumer.insert(item)
 end
end

3. Consumer:
begin
 while true do begin
 item = ProducerConsumer.remove
 consume_item(item)
 end
end

vi. The Programming language guarantees synchronization. Can be implemented
using semaphores (created automatically by the compiler).

VI. Sleeping Barber Problem
a. Another synchronization problem
b. Problem:

i. A waiting room has n chairs
ii. The barber takes a nap when there are no customers
iii. A customer leaves when there are no chairs
iv. A customer wakes up the barber if he is asleep.

c. Using semaphores:
semaphore customers = 0, barber = 0, mutex = 1
int waiting = 0

d. Barber:
while (true) {
 wait(customer); // inherently means sleeping if th ere are
no customers

wait(mutex);
waiting--;

signal(barber)
signal(mutex);
cut_hair();

}
e. Customer

wait(mutex);
if (waiting < n) {
 waiting++;
 signal(customer);

signal(mutex);
wait(barber);
get_haircut();

} else {
 signal(mutex);
}

VII. Critical Regions
a. Another high-level synchronization construct similar to monitors
b. Shared variables declared as v : shared τ
c. region v when B do S

i. B is some boolean expression
ii. S is some statement
iii. S is executed only when B is true, and while it’s executing no other process can

access v.
d. Guaranteed by the underlying high-level language (will translate to statements using

semaphores).

