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Notes – Process Synchronization 

I. Introduction 
a. If processes share no resources then you can schedule them by any policy that meets 

the system’s needs. 
b. When processes share resources, concurrent access to data may cause inconsistency. 
c. Example 

i. Have a bounded buffer; one producer, one consumer. 
ii. Producer waits ‘till the buffer is not full, inserts items at [in % BUFFER_SIZE]  
iii. Consumer waits until the buffer isn’t empty, removes from [out mod 

BUFFER_SIZE] 
iv. ‘counter’ is incremented /decremented as items are inserted / removed 

1. In machine language counter++; may be 
register1 = counter 
register1 = register1 + 1 
counter = register 

2. counter--; may be: 
register2 = counter 
register2 = register2 – 1 
counter = register 

v. Now there’s a problem!  What if the process is interrupted in the middle of those 
three steps? 

1. May have counter = 4, register1 becomes 5 
2. Now switch to the consumer process. 
3. Counter is still 4, so register2 becomes 3. 
4. Store 3 back in counter. 
5. Now return to the producer and store 5 back in counter. 

d. We need a way to describe which parts of a process must be synchronized. 
e. The example is called a race condition: several processes are accessing the same 

memory, so the final value depends on whoever gets there first. 
II. Critical Section 

a. Assume there are n processes; each has a part that accesses shared data 
b. That part of the code is called the critical section 
c. Constraints on an Ideal Solution 

i. Mutual Exclusion 
1. If a process is executing in its critical section, no other process can 

execute in its critical section. 
2. Thus only one process can access the shared data 

ii. Progress 
1. If no process is in its critical section, but one wants to start, it should be 

allowed. 
2. Execution cannot be indefinitely postponed. 

iii. Bounded Waiting 
1. When a process asks to execute in its critical section, there must be a 

bound for the number of times other processes will execute in their 
critical sections. 

2. There is no assumption about the relative speed of processes – one 
process may take much longer or shorter. 

III. Candidate Solutions 
a. Consider the case with only two processes: p1, p2 

i. do { entry section; critical section; exit section; remainder; } while (true); 
ii.  p1 do { 

wait (turn != 1); 
critical section 
turn = 2 



remainder section 
} while (true); 

iii. (With p2 symmetrical) 
iv. Mutual exclusion is satisfied. 
v. Progress is not.  p1 may be postponed indefinitely until p2 finishes. 
vi. This candidate solution fails. 

b. Another candidate 
i.  

do { flag[i] = true; 
 while (flag[j]); 

critical section 
flag[i] = false; 
remainder section 

} while (true); 
 

ii. Could have a deadlock if both flag[1], flag[2] = true. 
iii. Mutual exclusion is satisfied. 
iv. Progress is not (could deadlock). 
v. Solution fails 

c. Another candidate 
i.  

do { flag[i] = true; 
 turn = j; 
 while (flag[j] && turn == j); 

critical section 
flag[i] = false; 
remainder section 

} while (true); 
 

ii. Mutual exclusion is still satisfied 
iii. Avoids deadlocks now sine ‘turn’ can be only one value 
iv. Proving that this complies requires considering all possible scenarios (stating 

loop invariants, et cetera 
v. We won’t formally prove it, but get the idea 
vi. For multiple (more than two) processes, Baker’s Algorithm 

1. Wait as long as another process is taking a ticket or if any process has a 
lower ticket number 

2. (Simulating a bakery or deli line where everybody has a number and the 
next person is served) 

3.  
do {  choosing[i] = true; 

number[i] = max(number[0], ...,  
number[n-1]) + 1; 

choosing[i] = false; 
for (j = 0; j < n; j++) 
 while (choosing[j]); 
 while (number[j] != 0  

&& (number[j] < number[i] 
|| (number[j]==number[i] && i>=j) 

); 
} 
critical section 
number[i] = 0; 
remainder section; 

} while (true); 
d. NB: In reality these algorithms are not implemented in code but with hardware support. 



e. Another Solution 
i. Uses hardware support 
ii.  

boolean TestAndSet (boolean& target) { 
 boolean rv = target; 

target = true; 
return rv; 

} 
iii.  

 P i : do while (TestAndSet(lock)); 
  critical section; 
  lock = false; 

remainder section; 
 } 

iv. Hardware guarantees that the entire TestAndSet() function will be evaluated 
atomically. 

v. TestAndSet() means, “I want to use the critical section, so set the lock.”  If there 
was already a lock, returns true, meaning “wait.” 

f. Another Solution 
i. Also uses an atomic function 
ii.  

void swap (boolean& a, boolean& b) { 
 boolean temp = a; a = b; b = temp; 
} 

iii.  
Pi : do key = true; 
 while (key == true) swap (lock, key); 
 critical section; 
 lock = false; 
} 

iv. If the lock was true, key stays true (lock stays true). 
v. If the lock was false, key = false, lock = true 

g. The Rub 
i. These are all very simple solutions, but processes spend a lot of CPU time just 

waiting. 
ii. Since the process that’s executing its critical section knows when it finishes, it 

could notify that it’s done. 
IV. Semaphores 

a. A new data structure 
b. Semaphore  

i. s: an integer value 
ii. wait(s): while (s <= 0) do no-op; s--; 
iii. signal(s): s++ 
iv. Both wait() and signal() are atomic. 

c. How to Use:  do {  wait(mutex);  critical section;  signal(mutex);  remainder section; } 
d. Operations would actually be implemented differently: 

i. wait(s): s.value--;  if (value < 0) { /* add this value to the waiting list */  block; } 
ii. block; is a syscall that blocks execution 
iii. signal(s): s.value++;  if (value <= 0) { /* remove p from waiting list */ wakeup p; } 

e. Example 
i. We have many producers and consumers using a bounded buffer (of size n) 
ii. Have semaphores empty = n, mutex = 1, full = 0 
iii. Producer p: 

do { 
 Produce an item in ‘nextp’ 

wait(empty); 



 
wait(mutex); 
add nextp to the buffer 
signal(mutex) 
 
signal(full); 

} while (true); 
iv. Consumer c: 

do { 
wait(full); 
 
wait(mutex); 
remove next from the buffer 
signal(mutex) 
 
signal(empty); 
 
Consume nextc 

} while (true); 
 

v. empty starts out at n, so it’ll only hit zero when there are zero empty slots. 
vi. full starts out at 0 and can increment up to n. 

f. Two Kinds of Sempahores: 
i. Counting: What we just used 
ii. Binary: Can only be 0 or 1 (duh) 

1. Can implement counting semaphores using binary semaphores by 
having a binary semaphore to control access to an ordinary counting 
variable. 

V. Deadlocks 
a. Introduction 

i. P0 says: wait(s); wait(q); … signal(s); signal(q); 
ii. P1 says: wait(q); wait(s); … signal(q); signal(s); 
iii. Ve haff a deadlock, kiptin! 
iv. Definition of Deadlock: Two or more processes are waiting indefinitely for an 

event that can be caused only by one of the waiting processes. 
b. Dining Philosophers Problem 

i. Five philosophers sit at a circular table with one chopstick between each pair. 
ii. To eat, a philosopher needs both chopsticks (i.e. one from each side) 
iii.  How can we synchronize these processes? 
iv. Pi : do {  

wait(chopstick[i]); wait(chopstick[(i+1) % 5]);  
eat;  
signal(chopstick[i]); signal(chopstick[(i+1) % 5]);  
think; philosophize;  

} while (true);  
v. Again, a deadlock is possible.  Each philosopher gets one chopstick and waits for 

the second (which will be held forever by her neighbor). 
vi. We want a deadlock-free solution. 
vii. Perhaps odd-numbered philosophers might reach for the left chopstick first, then 

the right (while even-numbered philosophers would do the opposite).  Presto! 
c. Monitors 

i. Programming Language supported construct 
ii. Skeleton: monitor monitor-name{  

shared variable declarations 
procedure body P i  (…) { } 
other procedure bodies 



void init() { }  
}  

iii. Processes that want to execute inside the monitor are queued 
iv. Conditions: 

1. Two operations: wait() and signal() 
2. wait: Process executing x.wait() enters a queue waiting for condition x 

and is suspended until someone does x.signal(). 
v. Example: Producer / consumer 

1. Defined inside a ProducerConsumer monitor: 
condition full, empty; 
integer count; 
procedure insert(item : integer) begin 
 if count = N then full.wait() 

insert_item(item) // defined somewhere 
count = count + 1 
if count = 1 then empty.signal() 

end 
function remove() : integer begin 
 if count = 0 then empty.wait() 
 remove = remove_item()   // defined somewhere 
 count = count – 1 
 if count = N – 1 then full.signal() 
end 
count = 0 

2. Producer: 
begin 
 while true do begin 
  item = produce_item 
  ProducerConsumer.insert(item) 
 end 
end 

3. Consumer: 
begin 
 while true do begin 
  item = ProducerConsumer.remove 
  consume_item(item) 
 end 
end 

vi. The Programming language guarantees synchronization.  Can be implemented 
using semaphores (created automatically by the compiler). 

VI. Sleeping Barber Problem 
a. Another synchronization problem 
b. Problem: 

i. A waiting room has n chairs 
ii. The barber takes a nap when there are no customers 
iii. A customer leaves when there are no chairs 
iv. A customer wakes up the barber if he is asleep. 

c. Using semaphores: 
semaphore customers = 0, barber = 0, mutex = 1 
int waiting = 0 

d. Barber: 
while (true) { 
 wait(customer); // inherently means sleeping if th ere are 
no customers 

wait(mutex); 
waiting--; 



signal(barber) 
signal(mutex); 
cut_hair(); 

} 
e. Customer 

wait(mutex); 
if (waiting < n) { 
 waiting++; 
 signal(customer); 

signal(mutex); 
wait(barber); 
get_haircut(); 

} else {  
 signal(mutex); 
} 

VII. Critical Regions 
a. Another high-level synchronization construct similar to monitors 
b. Shared variables declared as   v : shared τ 
c. region v when B do S 

i. B is some boolean expression 
ii. S is some statement 
iii. S is executed only when B is true, and while it’s executing no other process can 

access v. 
d. Guaranteed by the underlying high-level language (will translate to statements using 

semaphores). 
 


