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Graphs 

I. Concepts 
a. A graph is a pair (V, E) of a set of vertices V and a set of edges E 
b. An edge is a pair of vertices (Vi and VJ) for some Vi and VJ ∈ V. 
c. Can be the empty set.  Vertices in an edge can be the same. 
d. Two distinct vertices Vi , VJ, i ≠ J are said to be adjacent if there exists an edge (Vi, VJ) 
e. Two distinct vertices Vi , VJ, i ≠ J are connected if there exists a path between them 
f. Path 

i. Sequence of vertices V1, V2, …, VN such that (Vi, Vi + 1) ∈ E for i = 1, 2, …, N – 1 
ii. The length of a path is the number of edges in the path (i.e. N – 1) 
iii. The path is a cycle if V1 = VN 
iv. The path is simple of all Vi, i = 1, 2, …, N – 1 are distinct (NB: V1 = VN is allowed!) 
v. Given a path V1, V2, …, Vi – 1, Vi, Vi + 1, …, VN, we have V1, …, Vi – 1 are Vi’s 

predecessors.  Vi + 1, …, VN are vi’s successors 
g. Edges 

i. An edge is directed if it is defined as an ordered pair of vertices (Vi, VJ) 
ii. Directed edges are denoted as Vi -> VJ 
iii. Vi is called the source, VJ the destination 
iv. The number of incoming edges to a vertex is the indegree 

h. Graph Types 
i. A graph is directed if each edge is directed 
ii. A graph is weighted if each edge has a weight 
iii. A graph is acyclic if there is no cycle in any path 
iv. A graph is connected if $ a path between any Vi, VJ ∈ E, i ≠ J 
v. Completely Connected 

1. | E | = | V | * ( | V | – 1 ) / 2 = θ( |V|2 ) 
2. Each vertex is connected to V – 1 vertices. 
3. Since it’s undirected (A, B) = (B, A) so divide by 2. 

vi. Minimally Connected.  | E | = | V | – 1 = θ( | V | ) 
i. Representation 

i. Adjacency Matrix 
1. 2D array 
2. bool type, shows whether [i][J] are connected or not 
3. By convention, array[x][x] all 1 
4. Typically done array[from][to] for directed graphs 

ii. Adjacency List 
1. Array of linked list 
2. Preferred for sparse graphs (fewer edges) 

j. Runtime 
Matrix  List 

i. Adjacent(Vi, VJ)  θ(i)  O( |V| ) 
ii. Process / Visit All θ ( |V|2 )  θ ( | V | + | E | ) 
iii. Storage Space  θ ( |V|2 )  θ ( | V | + | E | ) 

II. Graph Traversal 
a. First, tree traversal reminder 

i. Pre, in, post order (using stacks) (LIFO) 
ii. level order (using queue) (FIFO) 

b. Graph Traversal 
i. Breadth First (using queue) (FIFO) 

1. Visit nodes distance 1 first 
2. Then distance 2, 3, … 

ii. Depth First (using stack) (LIFO) 
1. Whichever direction It takes first, keep going in that direction 
2. Go as deep as possible, then switch to a new direction  



c. Nonrecursive Breadth First 
while Q not empty 

pop front 
if (not yet visited) 
 mark as visited 

process 
add adjacent to queue 

d. Nonrecursive Depth First – Same algorithm, but use LIFO stack 
e. Recursive Breadth First 

i. Given vertex 
ii. Visit, mark as visited 
iii. For each adjacent, breadthFirstSearch(Vi) 
iv. Use a ‘visited’ 1D array to record which nodes have already been visited 

f. Runtime 
i. The runtime is proportional to the number of elements put into the queue 
ii. Worst Case 

1. Completely connected graph 
2. How many vertices put into the queue / stack? 
3. ( |V| – 1) + ( |V| – 2) + … + 2 + 1 = |E| 
4. First time, can pick |V| - 1 vertices to add 
5. Ultimately: θ( |V|2 ) 

iii. Best Case 
1. Minimally connected graph 
2. ( |V| – 1) total vertices put into the queue / stack 
3. |E| 

iv. Note that the runtime is proportional to |E| in any case 
III. Topological Sort 

a. Given a directed acyclic graph (DAG) G = (V, E), a topological sort orders the vertices in 
a topological order.  For any Vi, VJ, i ≠ J, Vi appears after VJ in the order iff there exists a 
path from Vi to VJ 

b. Algorithm 
i. Find a vertex with no incoming edge.   
ii. Add to the result queue. 
iii. Remove V and all its outgoing edges. 
iv. Repeat until no vertices remain. 

c. May want to store indegree field on each vertex to track the number of incoming edges 
d. Runtime 

i. O ( |V| + |E| ) = O( |E| ) 
ii. Same reasoning as for breadth-first and depth-first search times 


