

Graphs

- I. Concepts
 - a. A graph is a pair (V, E) of a set of vertices V and a set of edges E
 - b. An edge is a pair of vertices (V_i and V_J) for some V_i and V_J \in V.
 - c. Can be the *empty* set. Vertices in an edge can be the same.
 - d. Two distinct vertices V_i , V_J , $i \neq J$ are said to be adjacent if there exists an edge (V_i , V_J)
 - e. Two distinct vertices V_i , V_J , $i \neq J$ are connected if there exists a path between them
 - f. Path
 - i. Sequence of vertices $V_1, V_2, ..., V_N$ such that $(V_i, V_{i+1}) \in E$ for i = 1, 2, ..., N 1
 - ii. The length of a path is the number of edges in the path (i.e. N 1)
 - iii. The path is a *cycle* if $V_1 = V_N$
 - iv. The path is simple of all V_i, i = 1, 2, ..., N 1 are distinct (NB: V₁ = V_N is allowed!)
 - v. Given a path V_1 , V_2 , ..., V_{i-1} , V_i , V_{i+1} , ..., V_N , we have V_1 , ..., V_{i-1} are V_i 's predecessors. V_{i+1} , ..., V_N are v_i 's successors
 - g. Edges
 - i. An edge is directed if it is defined as an *ordered* pair of vertices (V_i, V_J)
 - ii. Directed edges are denoted as $V_i \rightarrow V_J$
 - iii. V_i is called the source, V_J the destination
 - iv. The number of incoming edges to a vertex is the indegree
 - h. Graph Types
 - i. A graph is directed if each edge is directed
 - ii. A graph is weighted if each edge has a weight
 - iii. A graph is acyclic if there is no cycle in any path
 - iv. A graph is connected if \exists a path between any $V_i, V_j \in E, i \neq J$
 - v. Completely Connected
 - 1. $|\mathsf{E}| = |\mathsf{V}|^* (|\mathsf{V}| 1) / 2 = \theta(|\mathsf{V}|^2)$
 - 2. Each vertex is connected to V 1 vertices.
 - 3. Since it's undirected (A, B) = (B, A) so divide by 2.
 - vi. Minimally Connected. $|E| = |V| 1 = \theta(|V|)$
 - i. Representation
 - i. Adjacency Matrix
 - 1. 2D array
 - 2. bool type, shows whether [i][J] are connected or not
 - 3. By convention, array[x][x] all 1
 - 4. Typically done array[from][to] for directed graphs
 - ii. Adjacency List
 - 1. Array of linked list
 - 2. Preferred for sparse graphs (fewer edges)
 - j. Runtime

		Matrix	List
i.	Adjacent(V _i , V _J)	θ(i)	O(V)
ii.	Process / Visit All	$\theta (V ^2)$	θ(V + E)
iii.	Storage Space	$\theta (V ^2)$	θ(V + E)

- II. Graph Traversal
 - a. First, tree traversal reminder
 - i. Pre, in, post order (using stacks) (LIFO)
 - ii. level order (using queue) (FIFO)
 - b. Graph Traversal
 - i. Breadth First (using queue) (FIFO)
 - 1. Visit nodes distance 1 first
 - 2. Then distance 2, 3, ...
 - ii. Depth First (using stack) (LIFO)
 - 1. Whichever direction It takes first, keep going in that direction
 - 2. Go as *deep* as possible, then switch to a new direction

- c. Nonrecursive Breadth First
 - while Q not empty
 - pop front

if (not yet visited)

mark as visited

process

add adjacent to queue

- d. Nonrecursive Depth First Same algorithm, but use LIFO stack
- e. Recursive Breadth First
 - i. Given vertex
 - ii. Visit, mark as visited
 - iii. For each adjacent, breadthFirstSearch(V_i)
 - iv. Use a 'visited' 1D array to record which nodes have already been visited
- f. Runtime
 - i. The runtime is proportional to the number of elements put into the queue
 - ii. Worst Case
 - 1. Completely connected graph
 - 2. How many vertices put into the queue / stack?
 - 3. (|V| 1) + (|V| 2) + ... + 2 + 1 = |E|
 - 4. First time, can pick |V| 1 vertices to add
 - 5. Ultimately: $\theta(|V|^2)$
 - iii. Best Case
 - 1. Minimally connected graph
 - 2. (|V| 1) total vertices put into the queue / stack
 - 3. |E|
 - iv. Note that the runtime is proportional to |E| in any case

III. Topological Sort

- a. Given a directed acyclic graph (DAG) G = (V, E), a topological sort orders the vertices in a topological order. For any V_i, V_J, i ≠ J, V_i appears after V_J in the order iff there exists a path from V_i to V_J
- b. Algorithm
 - i. Find a vertex with no incoming edge.
 - ii. Add to the result queue.
 - iii. Remove V and all its outgoing edges.
 - iv. Repeat until no vertices remain.
- c. May want to store indegree field on each vertex to track the number of incoming edges
- d. Runtime
 - i. O(|V| + |E|) = O(|E|)
 - ii. Same reasoning as for breadth-first and depth-first search times