Graphs

I. Concepts
a. A graph is a pair (V, E) of a set of vertices V and a set of edges E
b. An edge is a pair of vertices $\left(V_{i}\right.$ and $\left.V_{J}\right)$ for some V_{i} and $V_{J} \in V$.
c. Can be the empty set. Vertices in an edge can be the same.
d. Two distinct vertices $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{J}}, \mathrm{i} \neq \mathrm{J}$ are said to be adjacent if there exists an edge $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{J}}\right)$
e. Two distinct vertices $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{J}}, \mathrm{i} \neq \mathrm{J}$ are connected if there exists a path between them
f. Path
i. Sequence of vertices $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{N}}$ such that $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}+1}\right) \in \mathrm{E}$ for $\mathrm{i}=1,2, \ldots, \mathrm{~N}-1$
ii. The length of a path is the number of edges in the path (i.e. $N-1$)
iii. The path is a cycle if $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{N}}$
iv. The path is simple of all $\mathrm{V}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{~N}-1$ are distinct (NB : $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{N}}$ is allowed!)
v. Given a path $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{i}-1}, \mathrm{~V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}+1}, \ldots, \mathrm{~V}_{\mathrm{N}}$, we have $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{i}-1}$ are V_{i} 's predecessors. $\mathrm{V}_{\mathrm{i}+1}, \ldots, \mathrm{~V}_{\mathrm{N}}$ are v_{i} 's successors
g. Edges
i. An edge is directed if it is defined as an ordered pair of vertices $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{J}}\right)$
ii. Directed edges are denoted as $\mathrm{V}_{\mathrm{i}}->\mathrm{V}_{\mathrm{J}}$
iii. V_{i} is called the source, V_{J} the destination
iv. The number of incoming edges to a vertex is the indegree
h. Graph Types
i. A graph is directed if each edge is directed
ii. A graph is weighted if each edge has a weight
iii. A graph is acyclic if there is no cycle in any path
iv. A graph is connected if \exists a path between any $V_{i}, V_{J} \in E, i \neq J$
v. Completely Connected

1. $|E|=|V|^{*}(|V|-1) / 2=\theta\left(|V|^{2}\right)$
2. Each vertex is connected to $V-1$ vertices.
3. Since it's undirected $(A, B)=(B, A)$ so divide by 2 .
vi. Minimally Connected. $|\mathrm{E}|=|\mathrm{V}|-1=\theta(|\mathrm{V}|)$
i. Representation
i. Adjacency Matrix
4. 2D array
5. bool type, shows whether $[i][J]$ are connected or not
6. By convention, array[x][x] all 1
7. Typically done array[from][to] for directed graphs
ii. Adjacency List
8. Array of linked list
9. Preferred for sparse graphs (fewer edges)
j. Runtime
i. Adjacent $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{J}}\right)$

Matrix	List
$\theta(i)$	$O(\|V\|)$
$\theta\left(\|V\|^{2}\right)$	$\theta(\|V\|+\|E\|)$
$\theta\left(\|V\|^{2}\right)$	$\theta(\|V\|+\|E\|)$

II. Graph Traversal
a. First, tree traversal reminder
i. Pre, in, post order (using stacks) (LIFO)
ii. level order (using queue) (FIFO)
b. Graph Traversal
i. Breadth First (using queue) (FIFO)

1. Visit nodes distance 1 first
2. Then distance $2,3, \ldots$
ii. Depth First (using stack) (LIFO)
3. Whichever direction It takes first, keep going in that direction
4. Go as deep as possible, then switch to a new direction
c. Nonrecursive Breadth First
while Q not empty
pop front
if (not yet visited)
mark as visited
process
add adjacent to queue
d. Nonrecursive Depth First - Same algorithm, but use LIFO stack
e. Recursive Breadth First
i. Given vertex
ii. Visit, mark as visited
iii. For each adjacent, breadthFirstSearch $\left(\mathrm{V}_{\mathrm{i}}\right)$
iv. Use a 'visited' 1D array to record which nodes have already been visited
f. Runtime
i. The runtime is proportional to the number of elements put into the queue
ii. Worst Case
5. Completely connected graph
6. How many vertices put into the queue / stack?
7. $(|\mathrm{V}|-1)+(|\mathrm{V}|-2)+\ldots+2+1=|\mathrm{E}|$
8. First time, can pick $|\mathrm{V}|-1$ vertices to add
9. Ultimately: $\theta\left(|\mathrm{V}|^{2}\right)$
iii. Best Case
10. Minimally connected graph
11. (|V|-1) total vertices put into the queue / stack
12. $|E|$
iv. Note that the runtime is proportional to $|\mathrm{E}|$ in any case
III. Topological Sort
a. Given a directed acyclic graph (DAG) $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a topological sort orders the vertices in a topological order. For any $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{J}}, \mathrm{i} \neq \mathrm{J}, \mathrm{V}_{\mathrm{i}}$ appears after V_{J} in the order iff there exists a path from V_{i} to V_{J}
b. Algorithm
i. Find a vertex with no incoming edge.
ii. Add to the result queue.
iii. Remove V and all its outgoing edges.
iv. Repeat until no vertices remain.
c. May want to store indegree field on each vertex to track the number of incoming edges
d. Runtime
i. $\quad \mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)=\mathrm{O}(|\mathrm{E}|)$
ii. Same reasoning as for breadth-first and depth-first search times
