

Binary Trees

- I. Properties
 - a. A binary tree with N nodes has N + 1 null links
 - i. Prove by induction
 - ii. Base Case (1 node): 2 links, both null
 - iii. Inductive Case: Assume property is true for N = i nodes
 - iv. N = i nodes (i + 1 null links) Then for all i + 1 we're adding two null links but using one to attach the new node.
 - b. The maximum number of nodes in a binary tree of height h is $2^{h+1} 1$
 - c. Let h be the height of a binary tree with N nodes. Then ceil(log_2N) $\leq h \leq N 1$
 - i. Height is at most N 1, at least ceil(log_2N)
 - ii. With N nodes, height is max when completely skewed, min when completely balanced.
 - iii. If completely skewed, h = N 1
 - iv. If completely balanced, we already know the height
 - 1. $\min = 2^{h}$
 - 2. $\max = 2^{h+1} 1$
 - 3. $2^{h} \le N \le 2^{h+1}$
 - 4. $h \leq \log(N)$
 - 5. If we pick an $N_1 > N$, then $h_1 = log(N_1)$ and $log(N_1) > log(N)$ so $h_1 > h$. Thus, $h \le log(N)$
 - 6. On the other side, get log(N) < h + 1 by the same reasoning.
 - 7. So $log(N 1) < h \le log(N)$ So h = ceil(log N)
 - 8. QED
 - d. Binary Search Tree
 - i. Definition: A binary tree that has a key value associated with each node and satisfies the following property:
 - ii. For all n_j in the left subtree and for all j_k in the right subtree, n_j value $\leq n_i$ value $< n_k$ value
- II. Trees Overview
 - a. A single node / vertex is a tree
 - b. A node with one or more trees linked to the node is a tree (subtrees)
 - c. "Recursive data structure"
 - d. An edge is a link between exactly two nodes.
 - e. The number of edges (connecting nodes) = the number of nodes -1
 - f. Taxonomy
 - i. (From most to least general)
 - ii. Free Tree: No root, any nodes linked through edges. That is, could pick any node as the root
 - iii. Unordered Tree: Has a root but no ordering
 - iv. Ordered Tree
 - 1. Impose an ordering
 - 2. All child nodes for any particular node are ordered
 - 3. This is most general definition we mean when we say "tree."
 - v. M-Ary Tree: All children for any node number $\leq M$
 - vi. Binary Tree: M-Ary Tree where M = 2
 - g. Terminology
 - i. Paths
 - 1. Path: A list of nodes connected by edges
 - 2. Path length = Number of edges in the path
 - 3. Depth of Node = Path length from the root to that node
 - 4. Height of Node = Longest path from the node to a leaf.
 - 5. Height of Root called the Tree Height
 - ii. Definitions

- 1. Height Balanced Tree (Balanced Tree)
 - a. No leaf is "much farther away" from the root than any other leaf
 - b. The definition of "much farther away" depends on which balancing scheme is used.
- 2. Forrest: A collection of one or more trees
- h. Representation
 - i. M-Ary Tree
 - 1. Remember that tree is a recursive definition, so the declaration will also be recursive.
 - 2. Need only declare "a node," not "a tree."
 - 3. Either use explicitly named pointers ("left", "right", "middle", .etc) or an array of pointers.
 - ii. Varying Number of Nodes
 - 1. The number of children varies from one node to another
 - 2. Cannot name links since there's no inherent maximum number
 - 3. Could use a linked list
 - 4. Each node needs a pointer to a child and a pointer to a sibling.
 - 5. By arranging the tree this way, every node has two pointers: it's a binary tree!
 - 6. Thus every ordered tree can be made into a binary tree
- III. Operations
 - a. Traversal
 - i. Preorder (like prefix math expression) Display, Left, Right
 - ii. Inorder: Left, Display, Right
 - iii. Postorder: Left, Right, Display
 - b. Removing a Node
 - i. Promote the maximum value from the left subtree
 - ii. Promote the minimum value from the right subtree
 - iii. Just an implementation decision.
 - c. Run-Time
 - i. Single operation (find, findMin, findMax, insert, remove)
 - 1. Single Node
 - 2. O(log N) average, O(N) worst
 - 3. Worst case: A completely skewed tree. Need to look at *every* node to get to the bottom.
 - 4. Average Case: Maximum height with N nodes, $N = 2^{h+1}$ so max height is $\theta(\log_2 N)$
 - ii. Finding M Nodes
 - 1. O(M log N) average
 - 2. O(MN) worst
 - iii. Construction
 - 1. Worst case, height is always N 1
 - 2. So runtime for construction of N nodes using comparisons as metric is 1 + 2 + 3 + ... + N-1
 - 3. Proof of Average Runtimes
 - a. Internal path length is the sum of the depth of all nodes of a binary search tree
 - b. Let D(N) be the internal path length of a binary search tree with N nodes.
 - c. Then, D(N) = D(i) + D(N i 1) + N 1 if N \geq 1 where 0 \leq i \leq N 1 (any value)
 - d. D(i) + D(N i 1) refers to the fact that all the nodes (excluding one in the root) are in one of the two subtrees.

- e. Any node in one of the subtrees is one level lower than it would be if measured from the top. So there are N - 1nodes in subtrees. Add that amount.
- f. Assume equal probability of having 1, 2, ..., N-1 nodes in the left subtree. That is, the distribution of i is uniform.
- g. $E[D(i)] = {}^{1}/{}_{N}D(0) + {}^{1}/{}_{N}D(1) + ... + {}^{1}/{}_{N}D(N-1)$ h. $E[D(N-i-1)] = {}^{1}/{}_{N}D(0) + {}^{1}/{}_{N}D(1) + ... + {}^{1}/{}_{N}D(N-1)$
- i. $\therefore E[D(N)] = E[D(i)] + E[D(N - i - 1)] =$
- $2 \sum (j = 0 \text{ to } N 1)(D(J) + N 1)$
- IV. **Balancing Binary Search Trees**
 - a. Three Approaches
 - i. Amortized
 - 1. Splay trees well-known example
 - 2. Whenever we insert a new key, bring it to the root (via rotations).
 - 3. Tends to be more balanced
 - 4. Do work now so it pays off over time.
 - ii. Randomized
 - 1. Randomly decide whether to insert each new node at the leaf or bring the new node to the root via rotations
 - 2. That decision is made at every node on the way down.
 - 3. Tends to be more balanced
 - 4. Easy to implement
 - iii. Optimized
 - 1. AVL Tree (oldest approach), Red-Black tree
 - 2. If we insert a node and discover that it violates a given rule, fix it.
 - b. AVL Trees
 - i. Simple optimization approach.
 - ii. If a property is violated as a result of an insertion / deletion, fix it.
 - iii. The AVL Tree Property: "The heights of the two subtrees differ by at most 1."
 - iv. Worst Case Lookup: O(log N)
 - v. Fix Heights by Rotation
 - 1. Zig-Zig
 - a. The property is violated because a new node was inserted in the left subtree of the left child.
 - b. Rotate Right.
 - 2. Zig-Zig
 - a. Right subtree of the right child.
 - b. Rotate Left
 - 3. Zig-Zag
 - a. Right subtree of the left child.
 - b. Rotate Left, Rotate Right
 - c. Double rotation
 - 4. Zig-Zag
 - a. Left subtree of the right child
 - b. Rotate Right, Rotate left
 - vi. Runtime of a single node search is O(N)
 - 1. Proof
 - 2. It will be good enough to prove that, for an AVL tree of N nodes,
 - height (h) = $O(\log N)$
 - 3. Let S(h) be the minimum number of nodes with height h in an AVL tree of N nodes. $S(h) \leq N$
 - 4. S(h) = S(h 1) + S(h 2) + 1 for $h \ge 2$. S(0) = 1, S(1) = 2
 - a. h = 0, minimum height is 1 node
 - b. h = 1, minimum = 2
 - c. Imagine left & right subtrees are the same height.

- i. Then S(h 1) + S(h 1) + 1 = S(h)
- ii. Subtree-Left + Subtree-Right + Root = Height
- d. What if the difference in height is 1? (The maximum allowed)
 - i. Then S(h) = S(h 1) + S(h 2) + 1
 - ii. Height = One Side + Other Side + Root
- e. The minimum is where the difference in height is 1. So we use that equation.
- 5. Note: S(h) = Fib(h + 2) 1 and Fib(h) = $\phi^{h} / \sqrt{5}$
- 6. \therefore S(h) $\cong (\phi^{h+2} / \sqrt{5}) 1 \le N$
- 7. $\phi^{h+2} \le (N+1)\sqrt{5}$
- 8. $h \le \log_{\phi}((N + 1) \sqrt{5}) 2$
- 9. $h = O(\log N)$
- 10. QED
- c. Splay Trees
 - i. Balanced binary search tree, built using Amortization approach
 - ii. Worst-Case runtime is still O(N). When doing M operations, still have worstcase = O(M log N)
 - iii. The idea is to do more work at insertion or search (every operation) with the hope that subsequent searches will be faster.
 - iv. If the same node is accessed again soon, our work will pay off.
 - v. Based on the notion of temporal locality
 - 1. If we just accessed something it's very likely we'll need it again soon.
 - 2. Caching works on the same principle.
 - 3. Common concept in computer science.
 - vi. Do the work with double rotations
 - 1. Called "splaying"
 - 2. Only time single rotation is used in splay trees is if an odd number of total rotations is needed
 - 3. *Tendency* is to keep the splay tree more balanced.
 - 4. Zig-Zag Case
 - a. Order: Bottom-up
 - b. Result: Depth of most nodes on the path from the root to the accessed node is reduced to *half*
 - 5. Zig-Zig Case
 - a. Order: Top-down
 - b. Result: Height reduced by 1
 - vii. Runtime
 - 1. Average: O(log N), worst O(N)
 - 2. Worst-case runtime is the same, but that case occurs less frequently than in plain binary search trees.
 - 3. When dealing with many nodes at once, worst *and* average case is O(M log N)
 - 4. Faster than AVL trees in terms of main memory
- d. 2-3-4 Trees
 - i. Not a binary search tree! Used as an introduction to red-black trees.
 - ii. Three types of node
 - 1. 2-node
 - a. One value, two children
 - b. Insert a new value, it becomes a 3-node
 - 2. 3-node
 - a. Two values, three children
 - b. Insert a new value, it becomes a 4-node
 - 3. 4-node
 - a. Three values, four children
 - b. Cannot insert a new value, so it needs to split.

- iii. Hard to implement, but it's flexible
- iv. It's always perfectly balanced!
- v. 4-Node Splits
 - 1. Move the middle item to the parent
 - 2. The other two items become children of the parent
 - 3. The new item is then inserted appropriately into one of the two children
- vi. Bottom-Up Insertion
 - 1. Find the new leaf; insert the node.
 - 2. If the node needs to be split, do so.
 - 3. The parent may then need to be split too.
 - 4. The split thus may propagate upward toward the root.
- vii. Top-Down
 - 1. While looking for the new node's home, spilt every 4-node encountered.
 - 2. This way there's no chance for propagation. It's more efficient.
- viii. Runtime
 - 1. Searches in 2-3-4 tree with N nodes visit at most log(N) + 1 nodes.
 - 2. Insertions require fewer visits than that.
- e. Red-Black Trees
 - i. The idea is essentially to implement a 2-3-4 tree in binary tree form.
 - ii. This has the fastest search/insertion runtime of any binary search tree.
 - iii. Coloring
 - 1. Each node is colored either red or black.
 - 2. The root is always black.
 - 3. Whenever a new node is inserted it's colored red.
 - 4. A "red node" is the same as an incoming "red edge"
 - 5. Red edges are indicated with a double line.
 - 6. Red edges connect nodes to make them behave like "clusters"
 - 7. Cannot have two red edges consecutively
 - iv. 4-Node Splits
 - 1. Case 1
 - a. 4-Node is a child of a 2-node
 - b. Color-flip the parent in the 4-node
 - 2. Case 2
 - a. 4-node is a child of a 3-node
 - b. 2r
 - i. 2r.i: Zig-Zag: Color flip parent in 4-node
 - ii. 2r-ii: Zig-Zig: Color flip the same way, but then rotate
 - c. 2l
 - i. 2I-i: Zig-Zig: Color flip and rotate
 - ii. 2I-ii: Zig-Zag: Color flip parent in 4-node
 - d. 2m
 - i. 2m-i: Zig-Zag: Color flip, bottom-up double rotation
 - ii. 2m-ii: Zig-Zag: Color flip, double rotation
 - v. Insertion
 - 1. On the way down, perform colorFlip() if both children are red.
 - 2. Insert the new node as red
 - 3. Wherever two red edges are connected, do bottom-up rotations
 - vi. Formal Definition
 - 1. A red-black tree is a binary search tree where each node is marked either red or black and no two red edges appear consecutively.
 - 2. A *balanced* red-black tree has the same number of black nodes on all paths from the root to any leaf.
- f. B-Trees
 - i. Last balanced binary search tree structure we'll study

- ii. Randomized: Effect is the same as if keys were inserted in random order
- iii. Introduction
 - 1. Optimization approach
 - 2. Considered an extension of the 2-3-4 tree
 - 3. The difference between this tree and the others: B-Trees are disk-resident, whereas others are main memory resident)
 - a. One disk page access takes the same time as hundreds of thousands of machine instruction executions.
 - b. Thus, for this tree disk I/O cost should be used as the performance metric (measured by number of pages accessed). CPU time just doesn't matter by comparison.
- iv. Concepts
 - 1. Multi-way balanced tree for external searching
 - 2. This is a disk-resident version of the 2-3-4 tree.
 - 3. One B-Tree node represents hundreds to thousands of bytes (512,
 - 1024, ...)
- v. Node Structure
 - 1. Non-Leaf Node
 - $a. \quad p_i, \ 1 \leq i \leq m \ is \ a \ pointer.$
 - $b. \quad k_i, \ 1 \leq i \leq m \ is \ a \ key.$
 - c. M-ary node: $p_1k_1p_2k_2 ... p_{m-1}k_{m-1}p_m$
 - d. Just like the 2-3-4 tree, but there could be many more than 4 elements.
 - 2. Leaf Node
 - a. Stores from L/2 to L items, where L is determined by the record size and disk page size.
 - b. Example: Page = 8,000 bytes, Record = 80 bytes, L = 100.
 - 3. Internal Node (except root)
 - a. Stores ceil(M/2) to M pointers, (M-1)/2 to M-1 keys.
 - b. L and M need not be the same!
 - c. Could take ceiling or floor to convert to an integer. Since M is usually very large, it doesn't really matter which.
 - d. Page Size B = 8kB, Pointer Size P = 4B, Key K = 16B
 - i. Then one entry = 20B
 - ii. Number of entries in each node = floor((B P) / (P + K)) = 400 = M
 - e. In practice, leaf nodes have the same pkpk..p structure as internal nodes, but the pointer is to an actual record. The ith value is the smallest in the (i + 1)th leaf.
 - 4. Root Node: From 1 to M-1 keys, 2 to M pointers.
- vi. Insertion
 - 1. (Assume duplicates are ignored)
 - 2. Find the leaf node, insert the new key.
 - 3. If the leaf overflows, ...
 - a. Split it.
 - b. Get a new node (acquire another disk page).
 - c. Move half the entries to the new node.
- vii. Deletion
 - 1. This is more complicated than insertion.
 - 2. Find and remove the key.
 - 3. If the node is less than half full, ...
 - a. Try to get keys from siblings.
 - b. If neither sibling can afford to give away keys, merge them together. It can't overflow, or one would've been able to give up some keys.

- c. Remove the smallest key of the larger sibling from the parent.
- d. If that results in less than half in the parent node, propagate begging-or-merging upward.
- viii. Run-Time
 - 1. Again, this is measured in terms of disk accesses (in pages)
 - 2. The number of pages accessed is the number of nodes accessed.
 - 3. Because the root and perhaps the next echelon are cached, we must approximate the tree height.
 - 4. In a binary search tree the worst case is when there's only one child per node. The best case is where there's two children.
 - 5. For a B-Tree the worst case is $\log_{M/2}(N)$, best = $\log_{M}(N)$.

 - 6. The more empty a tree is, the worse its performance. 7. Average case = $log_{(2/3)M}$ (MN) based on empirical data insert/delete a large number of nodes and see what happens.