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Linked Lists, Stacks, Queues 

I. Multilists 
a. Multiple lists in one data structure 
b. Useful for matrices that are sparsely populated. 
c. If the matrix is completely full, just use a 2D array!  If the matrix is sparsely populated 

that would waste space. 
d. Each node in multilist has two pointers: next row, next column (see slides) 
e. 2D Array vs. Multilist 

i. M = number of rows 
ii. N = number of columns 
iii. K = number of non-null elements in the list 
iv. Storage 

1. 2D Array = θ(MN) 
2. Multilist = θ(M + N + K) One cell for each row, column, and full cell. 

v. Access Time  
1. 2D Array = θ(1) = O(1) Direct access 
2. Multilist = O(M + N) 

vi. Notice the tradeoff between time and space! 
II. Generalized Queue Hierarchy 

a. ADT, Generalized Queue 
i. Encapsulates collection of items 
ii. Operations: insert, remove, size, isEmpty, many others 

b. Subtypes 
i. LIFO Queue (Stack) 
ii. FIFO Queue (Queue) 
iii. Random Queue (insert/remove wherever we want) 
iv. Deque (insert/remove at either end) 
v. Priority Queue (based on priority, not position in list). Very common.  This is 

used repeatedly in CS-104 
c. Stack Example: Postfix Notation 

i. Example of Postfix: 1 3 + 16 12 - * 12 3 2 * / + 
ii. Infix: (1 + 2) * (4 – 2) 
iii. Prefix: * + 1 2 – 4 2 
iv. Postfix: 1 2 + 4 2 - * 

 


