
Benjamin Fenster
 CS-103 (Skalka)
 5 October 2003

Type Declarations

I. Type Declarations as Abbreviations
a. type numeric = int
b. type intStack = int list
c. type student = string * int * float (* name, ssn, G PA *)
d. Parameterized by Type Variables

i. type ‘a stack = ‘a list
ii. NB: Any type variable appearing on the right side of a type declaration must

appear also on the left side (that is, must be bound)
iii. type stack = ‘a list (NO!)

II. Variants
a. Abbreviations don’t add anything NEW. Variants give truly new subjects for the

program.
b. Can take different shapes (thus “Variants”)
c. Example: Binary Trees

i. type ‘a tree = Leaf | Node of ‘a tree * ‘a * ‘a tre e
ii. NB: This is a recursive type definition
iii. Leaf has no value – a leaf is really at the edge (like the NULL pointer in C++)
iv. Node(Node(Leaf, 2, Leaf), 1, Leaf(Node(Leaf, 6, Lea f),

5, Leaf))
d. Deconstruction

i. Pattern matching
ii. The patterns are defined entirely by the types.
iii. let rec inorder t = match t with Leaf -> [] | Node(tl,

v, tr) -> (inorder tl) @ [v] @ (inorder tr) : ‘a tr ee ->
‘a list

iv. NB: @ is list append
e. Recursive vs. Non-Recursive Datatypes

i. Non-Recursive Definitions
1. type ‘a option = None | Some of ‘a
2. Used when a function may or may not return a value.
3. let f x = if (p(x) then Some(x + 1) else None

ii. Recursive
1. Don’t forget to have a basis for a recursive datatype!
2. type circular = Circ of Circular
3. In some languages this definition is meaningful, but not OCaml

f. Capturing the behavior of a tree
i. let treefold basis step tree = match t with Leaf ->

basis | Node(lt, v, rt) -> step(v, treefold basis s tep
lt, treefold basis step tr) : ‘a -> ((‘b * ‘a * ‘a) ->
‘a) -> ‘b tree -> ‘a

ii. let inorder = treefold [] (fun (v, lt, rt) -> lt @ [v] @
rt) : ‘a tree -> ‘a list

iii. let preorder = treefold [] (fun (v, lt, rt) -> [v] @ lt
@ rt) : ‘a tree -> ‘a list

III. Records
a. Like structs in C/C++
b. Collections of named values.
c. The difference is that, per the functional programming norm, fields are immutable.
d. Example

i. type student = { name : string ; email : string; gp a :
float }

ii. let bob = {name = “bob”; email = “bob@zoo.uvm.edu”; gpa
= 3.6 }

iii. Order in which field are given values is arbitrary
iv. Cannot partially define the type. Must give a value for all fields.
v. Field names are unique! type xyz = { name : string; } will replace the old

type!
vi. bob.gpa � 3.6

e. Formalities
i. Given type r = {l 1 : τ1, …, l n : τn}
ii. Typing Rules

1. {l1 = e1; …; ln = en} : r iff � 1 ≤ i ≤ n, ei : τI
2. eili : τI iff e : r and 1 ≤ i ≤ n

iii. Evaluation
1. {l1 = e1; …; ln = en} � {l1= v1; …; ln = vn} iff � 1 ≤ i ≤ n and e1 � vi

evaluated in right-to-left order
2. e1l1 � v1 iff e � {l1 = v1; …; ln = vn} and 1 ≤ i ≤ n

iv. Pattern matching on records
1. type r = {a : int; b : int}
2. let project_a {a = x; b = _} = x
3. type r = {a : int * float; b = int}
4. let project_a1 = {a = (x, _); b = _ } = x

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK:

