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Notes – Patterns and Pattern Matching 

I. Patterns 
a. One of the cool things about OCaml. 
b. The idea is that you can define a pattern in the way things are bound. 
c. Allows precise case analysis when deconstructing datatypes. 
d. Let p range over patterns. 
e. Patterns 

i. x (simple, basic pattern – a variable) 
ii. (p1, …, pn) tuples. 
iii. c constants 

1. let (1, y) = (1, 2) 
2. Match left-hand element, bind right-hand element. 
3. let (1, y) = (2, 1) � raise match failure exception. 
4. NB: Match failure raised whenever a required match fails. 

f. Patterns used in declarations 
i. We can use a pattern to declare multiple variables simultaneously 
ii. let (x, y) = (1, 2);; 
iii. Introduces bindings x : int, y : int, x = 1, y = 2 
iv. # x;; -: int = 1 
v. # x+y;; -: int = 3 
vi. FYI: let z as (x, y) = 1, 2);; 

g.  let thrd = (fun (x, y, z) -> z);; 
i. We accept the pattern (x, y, z) and return the third element. 
ii. This is a polymorphic function, polymorphic type! 
iii. There’s nothing to indicate what datatypes are involved except that the third 

element in the input must match the output. 
iv. It will work for (int, int, float) -> float 
v. (string, int, int) -> int 
vi. Et cetera. 
vii. Has type ∀α, β, χ α* β* χ -> χ 
viii. Much more about this in the second half of the semester. 

h. Wildcard Pattern 
i. _ 
ii. Matches any pattern 
iii. Introduces no bindings. 
iv. let _ = 5   never raises match failure, but introduces no bindings. 
v. Used in conjunction with pattern matching (with clauses) 

II. Pattern Matching 
a. Good for deconstructing data structures. 
b. let ((x, y), z) = ((1, 2), 5)  Note the nested pattern 
c. Implement case matching. 

i. let rec fact = match x with 0 -> 1 | x -> x * fact( x – 
1)  

ii. Less verbose, but equivalent to what we had before. 
d. Example 

i. Want to write passing_grade, returns true iff a given letter grade is 
passing. 

ii. let passing_grade grade = match grade with  
  “A” -> true 
| “B” -> true 
| “C” -> true 
| _ -> false  

iii. Only use _ when you don’t need the value on the right side. 
iv. if..then..else is really sugar for match statement. 



v. if p then e1 else e2 really means match p with true -> e1 | false -> e2 
e. Formal Definitions 

i. match e with p 1 -> e 1 | … | p n -> e n : τ iff for all 1 ≤ I 
≤ n, e i  : τ 

ii. Match evaluation 
1. Match e with p1 -> e1 | … | pn -> en � v iff e � v’ and ei � v in an 

environment extended with bindings resulting from matching e with pi 

where pi is the first match for v’ taken in order p1, …, pn 
2. Example 

a. match (1, (2, 3)) with (0, (x, y)) -> x * y 
| (1, (x, y)) -> x + y 
| (1, (x, y)) -> x – y 
 

b. x – y will never be the result!  The first match is taken. 
iii. Redundancy 

1. let rec fact x = match x with x -> x * fact(x – 1) | 0 -> 1 
2. The base case will never be reached! 
3. This diverges on any input. 

iv. Exhaustiveness 
1. let encode_bool x = match x with 1 -> true | 0 -> false 
2. Provides compiler / interpreter warning: match not exhaustive. 
3. Could make an explicit wildcard case (perhaps raise an exception if 

it’s reached) 
4. Could specify in comment: In: x ∈ {0, 1} 
5. Still get the warning if you use a comment, of course, but now it’s 

acceptable from a programming standpoing. 
f. NB: Pattern matching clauses introduce new bindings 

i. Now we have three ways to introduce bindings.  Need to redefine our notion 
of scooping. 

ii. Given match e with p1 -> e1 | … | pn -> en, � 1 ≤ I ≤ n, let xi1, …, xij be all the 
variables in pi.  Then the scope of xi1, …, xij is ei 

iii. Example 
1. let x = “fred” 
2. let y = 5;; 
3. match (1, 2) with (x, y) -> x + y � 3 
4. Even though we already had x, y bound, the new bindings shadow 

the originals. 
5. x � “fred”  after the match statement is done executing 

III. Type Polymorphism 
a. Very cool.  One of the triumphs of programming language research. 
b. The idea is that when you define a function it can take on a variety of forms. 
c. Example 

i. let third (_, _, x) -> x 
ii. third(1, 2, 3) � 3 
iii. third(“word”, 1.0, (fun x -> x)) � (fun x-> x) 
iv. third: ‘a * ‘b * ‘c -> ‘c 
v. Interpret ‘a, ‘b, ‘c, etc as greek letters.  These are type variables! 
vi. Types with quantified variables are called type schemes, which can be 

instantiated to yield types via consistent substitution of types for type 
variables. 

vii. So you can substitute int for ‘a, ‘b, ‘c to get an instance of the type scheme. 
viii. third: int * int * int -> int 
ix. third: int * string * float -> float 
x. NO GOOD: third: int * string * float -> int  not consistent 
xi. These are all instances of the type scheme 



IV. Polymorphic Lists 
a. Act like stacks. 
b. Recursively defined data structures. 
c. Ho9mogeneous (every element must have the same type τ for a particular list) 
d. Polymorphic in the element type τ 
e. [2; 4; 6; 8]  
f. All OCaml lists are finite. 
g. (fun x-> x)] : (‘a -> ‘a) list 
h. Lists are constructed inductively on the basis of the empty list and the cons operation 

:: 
i. Example 1::[] � [1]  
ii. � τ the constant [ ] : τ list 
iii. In other words, [ ] : � ‘a, ‘a list 
iv. If v : τ and v’ :τ list then v :: v’ : τ list 

i. Operations 
i. Constructing 

1. e1 :: e2 � [v; v1; v2; …; vn] iff e1 � v and e2 � [v1; v2; …; vn] 
2. Always cons onto the end.  Acts like a stack! 

ii. Deconstructing 
1. New pattern p1::p2 (matches only non-empty lists) 
2. Idea is that p1 gets the head, p2 gets the tail of the list. 
3. Example 

a. let head(x, _) = x : ‘a list -> ‘a 
b. let tail(_, x) + x : ‘a list -> ‘a list 

4. Example 
a. head [1; 2; 3] � 1  
b. tail [1; 2; 3] � [2; 3]  

5. Note that head doesn’t address empty lists 
6. New pattern [ ] will represent the empty list 

j. Lisp = List Processing Language.  Just to give an idea of how important lists are to 
functional programming. 

k. let rec lengh l = match l with [] -> 0 | _::xs -> 1  + 
length(xs) : ‘a list -> int  

l. Some people use h::t (head, tail).  Skalka uses x::x 
V. Higher Order Functions 

a. These take functions as arguments, and can return functions as results. 
b. f o g = f’ ∋ � x f’(x) = f(g(x))  
c. let compose = (fun f -> (fun g -> (fun x -> f(g(x)) )))  
d. ((compose : (fun x -> x + 1))(fun x -> x + 2))1 � 4  
e. compose : (‘a -> ‘b) -> (‘c -> ‘a) -> ‘c -> ‘b  
f. Syntactic Sugar 

i. let f x 1 … x n = e �  let f = (fun x 1 -> fun x 2 … fun x n -> 
e)  

ii. let f(x 1, …, x n)  is not the same! 
iii. let f g x = f(g(x))  

g. Examples 
i. let add1 x = x + 1  
ii. let add2 = compose add1 add1  
iii. add2 2 � 4  
iv. let add3 = compose add1 add2  

h. Partial Composition 
i. See above 
ii. add1 : int -> int  
iii. compose add1 : (‘a -> int) -> ‘c -> int  



iv. compose add1 add1 : int -> int  
i. Currying 

i. After Haskell Curry 
ii. Define functions that go between curried and uncurried form 
iii. let curry f = (fun x -> fun y -> fun(x, y))  
iv. curry : (‘a * ‘b -> ‘g) -> ‘a -> b -> ‘c  
v. let uncurry f = (fun (x, y) -> f x y)  
vi. uncurry : (‘a -> ‘b -> ‘c) -> (‘a * ‘b) -> ‘c  
vii. Example 

1. let f = compose add1  
2. let f’ = uncurry f  
3. f add1  is the same as add2  
4. f’(add1, 2) � 4  
5. let f’’ = curry f’ (* back to f again! *)  
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