Notes - Patterns and Pattern Matching

I. Patterns

a. One of the cool things about OCaml.
b. The idea is that you can define a pattern in the way things are bound.
c. Allows precise case analysis when deconstructing datatypes.
d. Let p range over patterns.
e. Patterns
i. x (simple, basic pattern - a variable)
ii. $\quad\left(p_{1}, \ldots, p_{n}\right)$ tuples.
iii. c constants

1. let $(1, y)=(1,2)$
2. Match left-hand element, bind right-hand element.
3. let $(1, y)=(2,1) \Downarrow$ raise match failure exception.
4. NB: Match failure raised whenever a required match fails.
f. Patterns used in declarations
i. We can use a pattern to declare multiple variables simultaneously
ii. let $(x, y)=(1,2) ;$;
iii. Introduce sindings x : int, y : int, $x=1, y=2$
iv. $\# x ; ;-:$ int = 1
v. \# x+y;; -: int = 3
vi. FYI: let z as $(x, y)=1,2) ;$;
g. let thrd = (fun (x, y, z) -> z); ;
i. We accept the pattern (x, y, z) and return the third element.
ii. This is a polymorphic function, polymorphic type!
iii. There's nothing to indicate what datatypes are involved except that the third element in the input must match the output.
iv. It will work for (int, int, float) $->$ float
v. (string, int, int) -> int
vi. Et cetera.
vii. Has type $\forall \alpha, \beta, \chi \alpha \star \beta \star \chi-\chi$
viii. Much more about this in the second half of the semester.
h. Wildcard Pattern
i.
ii. Matches any pattern
iii. Introduces no bindings.
iv. let $=5$ never raises match failure, but introduces no bindings.
v. Used in conjunction with pattern matching (with clauses)
II. Pattern Matching
a. Good for deconstructing data structures.
b. let $((x, y), z)=((1,2), 5)$ Note the nested pattern
c. Implement case matching.
i. let rec fact $=$ match x with $0->1 \mid x->x$ * fact $(x-$ 1)
ii. Less verbose, but equivalent to what we had before.
d. Example
i. Want to write passing_grade, returns true iff a given letter grade is passing.
ii. let passing_grade grade = match grade with
"A" -> true
"B" -> true
"C" -> true
_ -> false
iii. Only use _ when you don't need the value on the right side.
iv. if..then..else is really sugar for match statement.
v. if p then e_{1} else e_{2} really means match p with true $->e_{1} \mid$ false $->e_{2}$
e. Formal Definitions
i. match e with $p_{1} \rightarrow e_{1}|\ldots| p_{n} \rightarrow e_{n}: \tau$ iff for all $1 \leq I$ $\leq n, e_{i}: \tau$
ii. Match evaluation
5. Match e with $p_{1}->e_{1}|\ldots| p_{n}->e_{n} \Downarrow v$ iff $e \Downarrow v$ vand $e_{i} \Downarrow v$ in an environment extended with bindings resulting from matching e with p_{i} where p_{i} is the first match for v ' taken in order p_{1}, \ldots, p_{n}
6. Example
a. match $(1,(2,3))$ with $(0,(x, y))->x^{*} y$

$$
\mid(1,(x, y))->x+y
$$

$$
\mid(1,(x, y))->x-y
$$

b. $x-y$ will never be the result! The first match is taken.
iii. Redundancy

1. let rec fact $x=$ match x with $x->x$ * fact $(x-1) \mid 0->1$
2. The base case will never be reached!
3. This diverges on any input.
iv. Exhaustiveness
4. let encode_bool $x=$ match x with $1->$ true $\mid 0->$ false
5. Provides compiler / interpreter warning: match not exhaustive.
6. Could make an explicit wildcard case (perhaps raise an exception if it's reached)
7. Could specify in comment: In: $x \in\{0,1\}$
8. Still get the warning if you use a comment, of course, but now it's acceptable from a programming standpoing.
f. NB: Pattern matching clauses introduce new bindings
i. Now we have three ways to introduce bindings. Need to redefine our notion of scooping.
ii. Given match e with $p_{1} \rightarrow e_{1}|\ldots| p_{n} \rightarrow e_{n}, \forall 1 \leq I \leq n$, let $x_{i 1}, \ldots, x_{i j}$ be all the variables in p_{i}. Then the scope of $x_{i 1}, \ldots, x_{i j}$ is e_{i}
iii. Example
9. let $x=$ "fred"
10. let $y=5$;;
11. match $(1,2)$ with $(x, y)->x+y \Downarrow 3$
12. Even though we already had x, y bound, the new bindings shadow the originals.
13. $\mathrm{x} \Downarrow$ "fred" after the match statement is done executing
III. Type Polymorphism
a. Very cool. One of the triumphs of programming language research.
b. The idea is that when you define a function it can take on a variety of forms.
c. Example
i. let third $(,, \quad, x) \rightarrow x$
ii. third $(1,2,3) \Downarrow 3$
iii. third("word", 1.0, (fun x $->x$)) \Downarrow (fun $x->x)$
iv. third: ' a * 'b * 'c -> 'c
v. Interpret 'a, 'b, 'c, etc as greek letters. These are type variables!
vi. Types with quantified variables are called type schemes, which can be instantiated to yield types via consistent substitution of types for type variables.
vii. So you can substitute int for 'a, 'b, 'c to get an instance of the type scheme.
viii. third: int * int * int -> int
ix. third: int * string * float $->$ float
x. NO GOOD: third: int * string * float $->$ int not consistent
xi. These are all instances of the type scheme
IV. Polymorphic Lists
a. Act like stacks.
b. Recursively defined data structures.
c. Ho9mogeneous (every element must have the same type τ for a particular list)
d. Polymorphic in the element type τ
e. $[2 ; 4 ; 6 ; 8]$
f. All OCaml lists are finite.
g. (fun $x->x)]$: ('a -> 'a) list
h. Lists are constructed inductively on the basis of the empty list and the cons operation :
i. Example 1:: [] \downarrow [1]
ii. $\forall \tau$ the constant [] : τ list
iii. In other words, []: \forall ' a , 'a list
iv. If $v: \tau$ and $v^{\prime}: \tau$ list then $v:: v \prime: \tau$ list
i. Operations
i. Constructing
14. $e_{1}:: e_{2} \Downarrow\left[v ; v_{1} ; v_{2} ; \ldots ; v_{n}\right]$ iff $e_{1} \Downarrow v$ and $e_{2} \Downarrow\left[v_{1} ; v_{2} ; \ldots ; v_{n}\right]$
15. Always cons onto the end. Acts like a stack!
ii. Deconstructing
16. New pattern $p_{1}:: p_{2}$ (matches only non-empty lists)
17. Idea is that p_{1} gets the head, p_{2} gets the tail of the list.
18. Example
a. let head $(x, \ldots)=x$: 'a list -> 'a
b. let tail $(, x)+x$: 'a list -> 'a list
19. Example
a. head $[1 ; 2 ; 3] \Downarrow 1$
b. tail [1; 2; 3] $\Downarrow[2 ; 3]$
20. Note that head doesn't address empty lists
21. New pattern [] will represent the empty list
j. Lisp = List Processing Language. Just to give an idea of how important lists are to functional programming.
k. let rec lengh 1 = match 1 with [] -> $0 \mid \ldots:: x s ~->~ 1 ~+~$ length(xs) : `a list -> int I. Some people use h::t (head, tail). Skalka uses \(x:: x\) V. Higher Order Functions a. These take functions as arguments, and can return functions as results. b. \(\mathrm{f} \circ \mathrm{g}=\mathrm{f}^{\prime} \mathrm{\ni} \forall \mathrm{x} \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))\) c. let compose \(=(\) fun \(f\) \(->(f u n g\) (fun \(x->f(g(x)))\)) d. ((compose : (fun \(\mathrm{x}->\mathrm{x}+1\))) (fun \(\mathrm{x}->\mathrm{x}+2\))) \(1 \Downarrow 4\) e. compose : (`a -> `b) -> (`c -> `a) -> `c -> `b f. Syntactic Sugar i. let \(f x_{1} \ldots x_{n}=e\) let \(f=\left(f u n x_{1}->\right.\) fun \(x_{2}\)... fun \(x_{n}\)-> e) ii. let \(f\left(x_{1}, \ldots, x_{n}\right)\) is not the same! iii. let \(f g x=f(g(x))\) g. Examples i. let add1 \(\mathrm{x}=\mathrm{x}+1\) ii. let add2 = compose add1 add1 iii. add2 \(2 \downarrow 4\) iv. let add3 \(=\) compose add1 add2 h. Partial Composition i. See above ii. add1 : int -> int iii. compose add1 : (`a -> int) -> `c -> int iv. compose add1 add1 : int -> int i. Currying i. After Haskell Curry ii. Define functions that go between curried and uncurried form iii. let curry \(f=(f u n x->f u n y ~->~ f u n(x, y))\) iv. curry : (`a * `b -> 'g) -> `a -> b -> 'c
v. let uncurry f $=(f u n(x, y)$-> $f \times y)$
vi. uncurry : (`a -> `b -> `c) -> (`a * `b) -> `c
vii. Example
22. let $\mathrm{f}=$ compose add1
23. let $\mathrm{f}^{\prime}=$ uncurry f
24. f add1 is the same as add2
25. $\mathrm{f}^{\prime}(\mathrm{add} 1,2) \Downarrow 4$
26. let $\mathrm{f}^{\prime \prime}=$ curry $\mathrm{f}^{\prime}(*$ back to f again! *)

ERROR: undefinedfilename OFFENDING COMMAND:

STACK:

