

Notes – Types (2)

- I. Scope
 - a. NB: OCaml uses static scope as do almost all modern PLs.
 - b. Example
 - i. let x = 1;;
 - ii. let addx = (fun (y : int) -> x + y);;
 - iii. let x = 2;;
 - iv. addx(1) ↓ _____
 - c. Static
 - i. x will *always* refer to the x that was in scope at the time of the function declaration
 - ii. $addx(1) \Downarrow 2$
 - d. Dynamic
 - i. Uses whatever x is in scope at the time of the function call
 - ii. $addx(1) \Downarrow 3$
 - e. Static is more practical and more theoretically appealing.
- II. Type Inference
 - a. let $x : \tau = e_1$ in e_2
 - b. We've been assuming x has type τ when type-checking e_2
 - c. (fun (x : τ) -> e)
 - d. OCaml has a much smarter type analysis called "type inference" or "type reconstruction"
 - e. We could write that same statement as (fun x-> e)
 - f. Example
 - i. (fun x -> x + 1);;
 - ii. OCaml type inference analysis infers that x must be an int.
 - iii. The function's type is int -> int
 - g. Another Example: let x = 1 + 2 in 5 * x
 - h. This is a really deep topic to be discussed in detail in the second half of the semester.
 - i. This is an order of magnitude greater in complexity than regular type checking.
 - j. In fact, it results in an algorithm of exponential complexity.
 - k. Why isn't this a problem?
 - i. The examples that have such ridiculous complexity are abhorrent (pathological examples)
 - ii. In practice, time analysis will be polynomial (for real life programs)
 - iii. So exponential complexity is not a deal-breaker.
 - I. It's proven that if there is a type for an expression the analysis will find it.
- III. Syntactic Sugar / Sugarings
 - a. Nice to have, but don't really add anything new to the language.
 - b. Define these in terms of other expression types.
 - C. let $f = (fun x \rightarrow e)$ let f x = e
 - d. let rec f = (fun x _. e) let rec f x = e
 - e. Example
 - i. let rec fact = (fun x -> if x = 0 then 1 else x * fact(x 1))
 - ii. let rec fact x = if x = 0 then 1 else x * fact(x 1)
 - f. Certainly more convenient to write stuff the shorter way.
 - g. Also don't have to define any new behavior. You can have a very limited language that's still easy to use by adding syntactic sugar.
- IV. Commenting Conventions
 - a. (* Comemnt *)
 - b. These go right before definitions
 - c. NB: These conventions will be enforced on homework assignment.

- d. For Our class:
 - i. (* <functionName> : τ
 - In: <formal parameters, expected invariants> Out: <description of semantics> *)
 - ii. (* fact : int -> int
 - In: $x \ge 0$
 - Out: x!
 - *)
 - let rec fact...
- V. Composite Types
 - a. Data structures built of the composition of basic types
 - b. Products / Tuples
 - i. Type Form
 - - 1. $\tau_1 * \dots * \tau_n$ for n > 12. * like Cartesian product
 - ii. Value Form: $(v_1, ..., v_n)$ for n > 1
 - iii. Values
 - 1. Infinite set
 - 2. Examples
 - a. (1, 2): int * int [homogeneous]
 - b. ("hi", 2.0) : string * float [heterogeneous]
 - c. ((fun x -> x + 1), 0) : (int -> int) * int
 - d. (1, 0, "a") : int * int * string
 - e. ((1,0), 1.0) : (int * int) * float
 - 3. NB: $(\tau_1 * \tau_2) * \tau_3 \neq \tau_1 * \tau_2 * \tau_3$
 - iv. Binding Strengths
 - 1. So far we have * and -> as type constructors
 - 2. * binds more strongly than arrow
 - 3. int * int -> int = (int * int) -> int
 - v. Operations
 - 1. Construction
 - a. Formation
 - b. $(e_1, ..., e_n) : \tau_1 * ... * \tau_n$ iff $e_i : \tau_i$ for all $1 \le i \le n$
 - 2. Deconstruction
 - a. Projection
 - b. fst(e) : τ_{1} , snd(e) : τ_{2} iff e : τ_{1} * τ_{2}
 - c. Note that these are valid for pairs only!
 - vi. Evaluation
 - 1. Construction: $(e_1, ..., e_n) \downarrow (v_1, ..., v_n)$ iff for all $1 \leq$ $i \leq n e_i \Downarrow v_i$ in right-to-left order
 - 2. Deconstruction: fst(e) \Downarrow v₁, snd(e) v₂ iff e : $\tau_1 * \tau_2$ vii. Example
 - 1. (1 + 2, sqrt(4)) : int * float \Downarrow (3, 2.0)
 - 2. fst(1 + 2, sqrt(4)) : int $\Downarrow 3$
 - viii. Example
 - 1. We can now, in effect create functions with multiple arguments.
 - 2. let add pair x = fst(x) + snd(x);;
 - 3. addpair(3, 5) \Downarrow 8
 - c. More composite types later.

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK: