
Benjamin Fenster
 CS-100 (Damon)
 17 April 2003

Notes – Design Patterns

I. Concept
a. Design Patterns is a catalog of designs that work well in particular situations.
b. They’re answers to the question “how do I… ”
c. Useful as a way of describing designs since everybody knows what they are. (“This

is a factory method.”)
d. Designed by the Gang of Four: Gamma, Helm, Johnson, Vlissides
e. Over thirty well-defined, well-known designs exist.
f. There’s no governing body, just a forum of people who decide when a new design

gets added.
i. Is it generally useful?
ii. Is it distinct?

g. Senior developers will know these, since they’re just the set of “stuff that’s been run
into before.”

h. Now everybody can know them just by getting the book and studying.
II. Factory Methods

a. The rule says: Always write in terms of a superclass.
b. You do need to use the correct name when you say “new” though.
c. For example, your application may not care what operating system is used, but you

still have to instantiate the right thing.
d. You may not even know until runtime what you need.
e. Consider java.util.Calendar by example

i. Describes dates
ii. Many different calendar types can be represented.
iii. Don’t want to close the set of possible subclasses or break encapsulation.
iv. Nobody cares which type of calendar is being used at any moment.

f. The Solution
i. Have the superclass instantiate the appropriate subclass from a static

method.
ii. Create a getCalendar() method called a factory method.

g. Factory classes are just classes with many factory methods.
i. May instantiate many different types of class.
ii. If three objects need to work together, but could be {A, B, C}, {P, Q, R}, or {X,

Y, Z} but not any other combination, a factory class may be great.
iii. Calling three different methods to yield the three different objects would solve

that problem.
h. Use factory methods whenever multiple choices are classes are available, and where

a central piece of code can figure out which one is needed.
i. Whenever multiple objects like those described above need to interact, make a

factory class.
j. Iterators are the most broadly used example of this. Nobody ever knows what class

an iterator really is – Iterator itself is just an interface!
III. Flyweight Pattern

a. You usually want EVERYTHING to be an object.
b. Objects have a lot of overhead though, which is why int, float, et cetera aren’t objects

normally in Java.
c. One of the biggest complaints about O-O is that it’s memory-inefficient.
d. Example

i. Consider a database for baseball
ii. Stores every ball ever played.
iii. Want the count, and runners on base to be stored.
iv. Can take 4 * balls + strikes
v. Can OR 1=1st, 2=2nd, 4=3rd
vi. That works, but it’s not a great solution: it exposes rep!

vii. Want both pieces of data to be objects, but that’s a waste.
viii. Say there’s only 19 possible counts, and only 8 possible runner scenarios.
ix. A 2-and-0 count means the same thing for any ball played, so why do you

need a SEPARATE object for each?
e. Create one copy of each distinct object and store only a reference to it wherever the

copy is needed.
f. Use a factory method to create the objects as needed

i. If one already exists, return it.
ii. If none exists, instantiate it and then return it.

g. Used wherever there are many references to a limited number of objects.
h. The objects MUST be immutable since a change will affect everybody who’s using it.
i. Say “return a new count going from where I am now to… ” to get around the

immutability.
j. The upside: The == operator works for equality tests. That’s cheap!

IV. Singleton Class
a. Have an index of items, and want only one instance of any class in the index, or you

won’t be able to understand the ‘lookup’ results.
b. A singleton class allows only one (or a few) instances of itself to exist.
c. Make the constructor private, and use a factory method to instantiate.
d. Should be mutable. The point is to have the same changes affect everybody.

V. State Pattern
a. The best representation of an instance may depend on what value it currently has.
b. Storage for video would be very different for T2 as compared to Dinner with Andre.
c. May also want to base storage on some recent or known future use.
d. Example

i. Consider a list.
ii. For short lists, it’s cheaper to just have an array.
iii. For longer lists, may want an array of arrays so it’s easier to get to any

particular element.
iv. “I’ll be doing insertions now,” so switch to the linked-list representation. “I’ll

be doing accesses now,” so switch back.
e. Can’t change the representation at runtime, so what can be done?

i. Always use the array of arrays.
1. Demands some extra overhead.
2. Not terrible.

ii. Use Object for the representation and always cast it to the appropriate
current storage.

1. Downcasting is expensive!
2. It’s worse than the savings gained.
3. The code is harder to read too.
4. The compiler can’t really help you anymore since it doesn’t know

what representation you really will be using at any given moment.
iii. Could just create a new object.

1. Change the list each time, return a new list after every insert/remove
operation

2. If the representation is shared, that falls apart.
f. The Better Solution

i. Create an abstract ListRep superclass, private to List
ii. SmallListRep and LargeListRep would be subclasses.
iii. Can then change at will, without having to downcast. (ListRep has all the

same behavior so the code doesn’t care what’s happening behind the
scenes)

g. The Rub
i. This is only worthwhile when there’s a significant performance gain.
ii. Never implement it on the first try. Stick with the simple list, then see where

performance needs to be improved.

iii. This would usually be used only for immutable classes.
VI. Bridge Pattern

a. Consider Image as a superclass of JpegImage and GifImage
b. Now you want to add ScalableImage as a subclass of Image.
c. Why can’t you have a Scalable JpegImage?
d. You don’t want to create ScalableXXX subclasses for every single image class that

already exists.
e. You want the behavior hierarchy to be separate from (and parallel to) the

implementation hierarchy.
f. Separate the choice of behavior from that of representation
g. The Rub

i. Now you’ve got two hierarchies, which vastly adds to the complexity.
ii. You only need the bridge pattern when the implementation and behavior

need to both vary independently.
VII. Strategy Pattern

a. In code, you may want to decide what behavior is appropriate, and then do it.
b. Simplest Form

i. One function specifically makes the decision, and then do it.
ii. There’s no way to get the answer back, the “do it” has already been

executed.
c. Want to think of procedures as “first class objects” (can reference distinctly)
d. Possible Implementation

i. Map behaviors to integers.
ii. Then you’re restricted to whatever ideas were already hardcoded.

e. Best Approach
i. Make classes with one operation (like Runnable)
ii. Can pass the class around and eventually someone says “Okay, do your

thing.”
iii. The class also needs a way to store arguments (“WHERE to move?”)

f. For Assignment 4
i. Let chooseStrategy() return a class as described.
ii. The caller then calls .perform() to execute the action.

VIII. Command Pattern
a. Once behaviors are first class operations, other opportunities arise.
b. Imagine trying to compile a giant program.
c. Want to use all available machines.
d. Keep a list of what needs to be done, and let machines pull jobs off the list.
e. Compilers need to get a complete package of what needs to be done.
f. Can develop separate Compile, Link, Test objects and put whatever’s needed in the

queue. The machines don’t care what they get.
IX. Composite Pattern

a. Consider container objects
b. Containers may contain other containers.
c. Composite pattern describes tree-like structures
d. There are many different ways to express trees, but this has some advantages
e. Composite is a subclass of Component, so a Composite can be a leaf itself.

X. Visitor vs. Interpreter Pattern
a. Interpreter Pattern

i. What will be done with the tree? Sometimes only the top needs to be
touched, sometimes every single leaf.

ii. Let Composite draw all children, and let each node draw itself, for example.
iii. It’s easy to add new node types then – just define alli the right behaviors for

each.
iv. It’s hard to add new behaviors since every single node type would have to be

modified.
b. Visitor Pattern

i. Write a Visitor class for each possible behavior.
ii. Just send the Visitor to each node and let it do its job.
iii. That removes the ability to make different types!

1. Use double dispatching.
2. In Visitor, write a method that’s specific to each type.

iv. The visit() method on each node calls the appropriate method on Visitor.
v. Now it’s really easy to add actions since each is local to a single class.
vi. Now it’s really hard to add new node types since their code is spread among

all types of Visitors.
c. Which to Use?

i. If it’s not obvious, use interpreter. It’s probably the right choice.
ii. More often you’ll want to add node types, so Interpreter is the best option.
iii. If you plan to add actions more often, use the Visitor pattern.

XI. Adaptor Pattern (wrapper object)
a. Code is rarely written in isolation. You want to integrate it with existing systems.
b. You want an intervening object to talk from the new system to the old.

i. Maybe it just converts datatypes.
ii. Maybe it changes / translates the names of things.
iii. Maybe it translates levels of data.
iv. Maybe it filters unneeded data.

c. This is probably the most obvious pattern. It’s easy to see when you’re faced with a
problem that this is what you need.

d. The Rub
i. The two interfaces need to have enough similarities that it’s possible to talk

back and forth.
ii. Cannot get more precision in data.
iii. Cannot increase the granularity of control.

XII. Decorator Pattern
a. Subclassing can be used to add behavior.
b. What if you want to add behavior to many superclasses?
c. Consider scrolling. Have many User Interface objects that all want scrolling, but don’t

want all the extra code.
d. Wrap the class, rather than subclassing it.
e. Instead of making it a subclass, just make a class that USES the original component.
f. The Rub

i. Now you can’t use the specific operations of the original object since it’s
hidden inside a scrolling gadget.

ii. The scroller is just a scroller and doesn’t know what text boxes do.
iii. Need to also keep a reference to the original component to get ITS

functionality.
g. Usage

i. Use whenever you want to add behavior to a group of existing classes,
including unknown classes.

ii. The wrapper becomes the top-level view. If that’s not necessary, just put an
object in the representation that can handle the functionality you want.

XIII. Observer Pattern
a. Decorator and Adaptor are both types of indirection
b. Consider a computer with a wired and wireless connection. Applications don’t care

which is being used at any particular moment.
c. Applications also don’t want to keep asking which to use for each network access.
d. Instead, apps can go through a proxy

i. ONLY the proxy knows which NIC should get the traffic.
ii. Proxy ? “Does the Work For You”

e. The Rub
i. There’s a small performance hit.
ii. There’s a small increase in design complexity

f. Usage
i. One thing on one side, many on the other.
ii. You might want to pick one thing from the many, like in the example.
iii. You could also have many objects that want to receive information about the

application.
iv. Each would then register interest in observing and the proxy would send

information to all those so registered.
g. How to get Information to the Observer?

i. Could have generic Subject, Observer interfaces.
ii. Could build the functionality into specific classes.
iii. Pull Model

1. The observer grabs data specifically whenever it’s needed.
2. The conscious action is by the observer, the subject just responds.

iv. Push Model
1. Send an object storing all the new information.
2. The subject is then responsible for taking the action.

h. Figuring out that you need the observer pattern is easy.
i. Push vs. Pull is harder.

i. Use push when everybody wants the same data, so you only need to send
what’s useful.

ii. Use pull when each observer may want to grab different data.
j. It’s better to be general and use generic Subject, Observer interfaces.

XIV. Mediator Pattern
a. The observer pattern has some messy points

i. The subject adopts some of the work involved in doing the observation,
which takes away from its real responsibility.

ii. The subject also learns who the observers are, which may not be a good
thing!

b. What if there’s more than one subject?
c. Consider SETI@home by example.
d. The observers may not even care which subject produced the data.
e. It might be nice to tag the results so they can be identified later, but the reaction to

generation of new data doesn’t differ based on which subject generated it.
f. The observer pattern could almost be used, but it’s too messy to cross-register many

subjects with many observers.
g. Instead, add a Mediator.
h. Subjects register with the mediator as data producers.
i. Observers register that they’re interested in some particular type of data.
j. When subjects send new data, it’s dispatched to all waiting observers.
k. This is also called publisher/subscriber (pub/sub)

XV. Summary
a. Design patterns are “not the panacea”
b. They have strengths and weaknesses, like any design ideas do.
c. You need to understand why you want a particular pattern, what the details are (all

those little choices that come after picking a pattern), and what the drawbacks are.
d. These are just ideas of ways to solve the problem.
e. Don’t limit yourself to this particular subset of ideas.

