
Benjamin Fenster
 CS-100 (Damon)
 29 March 2003

Notes – Visibility

I. Encapsulation
a. Only use a public interface, don’t give any access to the private representation.
b. Compilers support that now.
c. Not all representation is completely private though.

i. Superclass/subclass relationships may need to share some information.
ii. Not ALL representation needs to be shared though, so one can’t just say “all

subclasses act like the superclass.”
d. Two classes may need to cooperate even when they aren’t a superclass/subclass.

II. Visibility Options
a. Every class and member has a visibility setting
b. public
c. private
d. protected (some limitation)
e. nothing

i. If no visibility is specified, access is slightly more limited than ”protected”
elements.

ii. A bit counterintuitive.
f. Classes cannot be protected or private; it doesn’t make sense.
g. If a class says nothing, it can only be used within its package (see below).

III. Packages
a. Used partly for naming and organization.
b. Also used in determining visibility.
c. Subclasses and classes in the same package can see protected elements
d. Assumptions on Cooperating Classes

i. Only classes in the same package cooperate
ii. EVERY class in a package cooperates.

e. See CS100-28-12
IV. C++

a. C++ offers a much better model of visibility.
b. protected in C++ means “visible by subclasses only.”
c. Visibility is defined for groups of members, not individual members.
d. class vs. struct

i. struct defaults to public members
ii. class defaults to private members.
iii. That’s the only difference.

e. C++ doesn’t have “packages,” so there’s no inherent group of cooperating classes.
f. Friends

i. Friend functions can see ALL the representation in the cooperating class.
ii. Allows the programmer to specifically give access to classes (or functions)

that are really cooperating, instead of letting the compiler assume that all
packaged classes are related.

g. Namespaces
i. namespece (identifier) { declaration; declaration; }
ii. Declare a namespace and give a list of forward declarations (for classes and

functions)
iii. Most C++ code predates this, so it’s not used too much.

V. UML
a. + means public
b. – means private
c. # means protected
d. The symbol is given just before the attribute or operation name.
e. Most of UML deals with public behavior only, so details that relate to implementation

aren’t normally discussed in it anyway.

VI. Security
a. “If I call it private, nobody can get it.”
b. C++ renders this philosophy completely false

i. If a program can get the base address of a class, some simple pointer
arithmetic will give access to any member.

ii. Making members private is simply not effective security.
c. Java makes it a little harder

i. The only way to “hack in” is to write “native code”
1. Can write code in another language and import it into Java.
2. Writing a piece of C++ code would simply introduce the same

problems.
ii. With downloaded code (such as would run in a web browser) new code can’t

be inserted anyway so it’s safe.

