Notes – Chapters 16 & 17

Capital Expenditure Decisions

- I. Time Value of Money
 - a. Based on the fact that using money has a value.
 - b. Interest
 - i. Interest is compensation to the lender.
 - ii. Calculated based on the principal, time involved, and a rate.
 - iii. Simple
 - 1. Principal * Rate = Interest
 - 2. Principal does not change
 - iv. Compound
 - 1. Interest is added to principal over time
 - 2. Exponential Growth
 - c. Future Value = $S(1 + i)^{t}$
 - d. Present Value
 - i. S / (1 + i)^t
 - ii. Also called "discount rate"
 - e. Annuity
 - i. Series of payments for the same amount
 - ii. Easier to calculate than for unequal discrete payments
 - f. See BSAD-060 for review
- II. Discounted Cash Flow Methods
 - a. Methods of evaluating investment decisions that include the time value of money.
 - b. Net Present Value
 - i. Five Steps
 - ii. Make a Timeline
 - 1. Purchase date, T_1 , T_2 , T_3 , ...
 - 2. Define new costs at each time
 - 3. Consider the benefits at each time
 - iii. Define an appropriate discount rate
 - 1. Hurdle rate
 - 2. Considered in EVA too.
 - iv. Calculate present values for everything on the timeline.
 - v. Calculate net present value as the sum of all present values calculated.
 - vi. Any positive Net Present Value is worth accepting
 - vii. Always talking about cash flows, not accounting income
 - c. Internal Rate of Return
 - i. Discount rate that will cause the net present value of a project to be zero.
 - ii. Investment Required / Annual Cash Flow = PV Factor
 - iii. (Works for Annuities only)
 - iv. Solving for Present Value of an annuity such that it exactly cancels the current investment.
 - v. Use the calculated factor to find the associated rate of return
 - vi. If you don't have an annuity, you have to use trial and error.
 - vii. Assumptions
 - 1. All cash flows occur at period-end (not true, but not worth the cost of dealing with cash flows in the middle of a period)
 - 2. Projects are made with certainty
 - a. Can increase the hurdle rate to lower PV for later periods.
 - b. Still a source of error
 - 3. Perfect capital markets are assumed
 - a. Borrowers and lenders will be able to access money at the rate implicit in the analysis (the hurdle rate)

- 4. All cash flows are immediately reinvested
 - a. NPV means at the hurdle rate
 - b. IRR means at the rate implicit in the analysis
- 5. The model is robust enough that with these sources of error that the benefits of adding their complexity do not outweigh the costs.
- viii. Risk / Sensitivity Analysis
 - 1. Example
 - a. Investment Cost = \$50,470
 - b. Cost Savings, Annual, 5 years = \$14,000
 - c. Hurdle Rate = 10%
 - d. How much would the \$14,000 need to drop before it's not worth the investment?
 - 2. Don't want to make an investment that yields negative NPV
 - Annuity Amount = PV / Factor gives value needed to zero out the NPV.
 - 4. Example: \$13,313 is the lowest acceptable return.
- III. Income Taxes
 - a. Cash flows are heavily impacted by income taxes
 - b. Example
 - i. Purchasing a new truck
 - ii. Cost = \$40,000
 - iii. Depreciation, 4 years, straight-line
 - iv. Anticipated cash revenue = \$110,000
 - v. COGS, Cash = \$60,000
 - vi. Tax Rate = 28%
 - c. After-Tax Cash Flow = \$36,000
 - d. Depreciation Etax Shield
 - i. Use half-year convention
 - 1. Should be \$10,000 / year
 - 2. Make year 1 = 5,000, year 5 = 5,000, other years = 10,000
 - ii. Depreciation Tax Shield = \$11,200 (\$40,000 * 28%)
 - iii. Deductible from taxable income
 - iv. Include depreciation in NPV analysis so taxes will be lower.
 - e. MACRS
 - i. Modified Accelerated Cost Recovery System
 - ii. Government came up with ACRS to explain how to use accelerated depreciation for tax purposes
 - iii. Eight asset categories (see page 747)
 - iv. Half-year convention in year of acquisition
 - v. Take the second half in the second year in addition to whatever accelerated depreciation amount is calculated for that year.
 - f. Example
 - i. Cost of Machine = \$100,000
 - ii. After Tax cash Flows = \$20,000 / year [5 years]
 - iii. Tax Rate = 28%
 - iv. Discount Rate = 10%
 - v. Find the NPV of the proposal.
 - vi. Considerations
 - 1. Incremental cash flow, after tax.
 - 2. Depreciation Tax Shield
 - vii. Solution
 - 1. Present Value of Incremental = \$75,800
 - 2. MACRS depreciation using schedule of rates (times 28%) = \$21,644
- IV. Non TVM Methods
 - a. Neither endorsed nor preferred, but have some limited utility
 - b. Payback

- i. Initial Investment / Net Annual After Tax Cash Inflow
- ii. Does provide a tool to screen investments
- iii. Might decide your investments need quick payback since you can't wait for long-run benefits (not enough cash)
- iv. Also do a DCF analysis of some kind.
- v. Might have a situation where payback doesn't show significant positive or negative effects until after the payback period, and just calculating the payback period misses that.
- c. Accounting Rate of Return
 - i. Incremental Accounting Income used
 - ii. Accrual instead of cash flows.
 - iii. No TVM involved.
 - iv. ARR = (Incremental Accounting Revenue Incremental Accounting Expenses) / (Initial Investment)
 - v. Could use average investment as denominator: Take average of beginning and ending book value.
 - vi. ARR_{initial} < IRR < ARR_{average}