

Cost Behavior and Estimation

- I. Overview
 - a. Relationship between activity and cost
 - b. Cost Estimation
 - i. Trying to define cost behavior
 - ii. Uses a historical perspective
 - iii. Look at past source documents, trends, etc.
 - c. Cost Prediction
 - i. Use the estimate for planning, forecasting, decision-making
 - ii. Remember Ford (stupidly) ditching its cost estimation gurus!
- II. Types of Cost
 - a. Variable Cost
 - i. Total cost is Linear. O(N)
 - ii. Unit Cost is flat. d/dx = 0
 - iii. Examples
 - 1. For merchandiser, Cost of Goods Sold
 - 2. For manufacturer, Direct Material, variable Manufacturing Overhead
 - 3. Sales Commissions
 - b. Fixed Cost
 - i. Total: Flat
 - ii. Unit: $O(-N^2)$
 - iii. Example: Property taxes, salary of VP
 - c. Step Variable Cost
 - i. Quantized
 - ii. Relatively small increments define a step, so the cost is essentially variable.
 - iii. Example: Restaurant. A waiter costs a single amount and can handle a small range of activity. Adding another waiter is a sudden jump.o
 - iv. Treating as variable costs is accurate enough.
 - d. Step Fixed Costs
 - i. Example: Renting square footage for the factory. A particular amount will suffice for a wide range of activity, but will eventually need to be upgraded
 - ii. (See long-run AVC study from Microeconomics)
 - iii. Wider ranges of activity and more significant commitments in increasing one step than with step variable costs.
 - e. Semi-Variable (Mixed) Costs
 - i. Examples: Electric utility bills, leases.
 - ii. Slope is that of a variable cost, Y-intercept is the fixed-cost level.
 - f. Curvilinear
 - i. Not all cost relationships are flat (d/dx is not constant)
 - ii. If relationship is curvilinear, take the tangent at some point and use it for a small range.
 - iii. The range where the line is accurate needs to be the same range in which management expects to operate.
- III. Cost Behavior
 - a. Account Classification
 - i. Go through ledger accounts and put each into categories.
 - ii. Break those into variable and fixed costs.
 - iii. -or- Break into Engineered, Committed, and Discretionary Costs
 - 1. What level of control is exercised over costs?
 - 2. Committed \rightarrow Long-term
 - 3. Engineering \rightarrow Relationship with activity level. 70% of cost is usually engineered as soon as your product is designed.

- 4. Discretionary \rightarrow Can be altered by managerial decisions.
- b. Visual Fit Method
 - i. More objective than account classification
 - ii. Plot a graph of cost as a function of activity
 - iii. Find the best-fit line
 - iv. Y-Intercept is the estimated fixed cost. d/dx is per-unit cost.
 - v. VC = Total Cost (value of Y) Y-Intercept.
 - vi. Unit Variable Cost is VC / Activity at any given activity level.
 - vii. To recompose, Total Cost = FC + (Unit VC) (# Units)
 - viii. Remember that estimates are valid only within your original range. Cost may not follow the same pattern in regions for which you have no data.
 - ix. Downside: Subjective
 - x. Upside: Uses all data points.
- c. High-Low Method
 - i. Based on activity level, not cost! (High and Low activity levels)
 - ii. Find high and low activity, and get costs at those levels.
 - iii. Calculate change in both.
 - iv. Unit VC = Cost / Activity
 - v. FC = TC (Unit VC)(# Units)
 - vi. Still based on historical data.
 - vii. Downside: Uses only two data points.
 - viii. Upside: Objective. Purely mathematical.
- d. Least-Squares Regression
 - i. Attempt to minimize the sum of the squares of the deviations from the line to the data.
 - ii. An objective version of the visual fit method, essentially.
 - iii. In Excel
 - 1. Tools > Data Analysis
 - 2. Y is Cost, X is Production
 - 3. Safe to ignore the weird values it gives too complex for BSAD-061
 - 4. Intercept = FC
 - 5. X-Variable = d/dx(VC) = Unit VC
 - 6. Under statistics, R-Square is the coefficient of determination. The
 - closer to one, the better. Under 0.5 is probably too risky to use.
 - iv. In Lotus
 - 1. Range > Analyze > Regression
 - 2. Y is Cost, X is Production
 - 3. Constant = FC
 - 4. X Coefficient(s) = d/dx(VC) = Unit VC
 - 5. R-Square is still the coefficient of determination
- IV. Learning Curve
 - a. Costs tend to drop as production continues as workers learn the processes.
 - b. An 80% learning curve means every time production doubles, per-unit labor time goes down to 80%.
 - c. d/dx is negative and increasing. (y(x) is concave up) Big effects early, in other words.
 - d. These effects must be taken into account from the outset or prices may be set too high for later production runs!