

Notes – Bivariate Statistics

- I. Introduction
 - a. So far we've only dealt with univariate statistics: one measurement for each EU.
 - b. Could measure two things per EU (bivariate) or more (multivariate)
 - c. We want to consider bivariate now.
 - d. Consider X independent, Y dependent and use X to predict Y.
 - e. If both are quantitative, need to see Chapters 5 and 13.
 - If X is qualitative, Y quantitative, need Chapter 15 (analysis of variants, ANOVA) f.
- II. Long-Volume Example
 - a. Can plot data, draw line to represent it.
 - b. Not a perfect predictor in this example.
 - c. Want to capture the relationship between the two variables.

III. Notation

- a. Variance and Covariance
 - i. $VAR(X) = s_x^2 = \sum (x \bar{x}) / (n 1) = S_{xx} / (n 1)$ ii. $VAR(Y) = s_y^2 = s_{yy} / (n 1)$

 - iii. $COV(x, y) = \left[\sum (x \bar{x})(y \bar{y})\right] / (n 1) = s_{xy} / (n 1)$
 - 1. Cross product sums of squares
 - 2. Variances are always ≥ 0 .
 - 3. Covariance can be any number.
 - iv. $s_x = 3.085$, $s_y = 0.501$ (standard deviation)
- b. Correlation Coefficient
 - i. $r = COV(x, y) / (s_x * s_y)$
 - ii. Scaled with s_x and s_y
 - iii. Between -1 and +1
 - iv. Lungs: 1.068 / (3.085 * 0.501) = +0.692
 - v. General Formula: $\sum (x \bar{x})(y \bar{y}) / \sqrt{(\sum (x \bar{x})^2 \sum (y \bar{y})^2)} = \sqrt{(s_{xx} s_{xv})}$
 - vi. Characteristics
 - 1. Population (parameter) correlation coefficient = ρ
 - 2. Sample (statistic) = r
 - 3. $-1 \le r \le 1$ always
 - 4. Magnitude measures strength, sign measures direction
 - 5. r = 0 means no correlation, +1 means perfect positive, -1 means perfect negative.
 - vii. Lung Volumes
 - 1. $s_{xx} = (79.4 85.5)^2 + ... + (89.5 85.5)^2$
 - 2. s_{vv} = ...
 - 3. $s_{xy}^{'} = (79.4 85.5)(4.3 5.06) + ... + (89.5 85.5)(5.3 5.06)$
 - viii. Caveats
 - 1. r = 0 doesn't imply that there is no relationship!
 - a. Could have a more subtle relationship.
 - b. Correlation coefficient measures linear correlation.
 - c. The moral: Always plot the data!
 - 2. Large r does not imply causation
 - a. Correlational fallacy: post hoc ergo proper hoc (after which, therefore because of which)
 - b. Example
 - i. x = 18 hole golf courses, y = number of divorces (1960 - 1990)
 - ii. There's a definite positive correlation.
 - iii. Causation? Perhaps merely the increasing population caused both!
 - c. Lurking Variables: Some other variable may cause both x and y.

- d. Establishing causation requires a carefully designed study, perhaps with control of lurking variables.
- e. Partial Correlation

ii.

i.
$$r_{xy^*z} = (r_{xy} - r_{xz}r_{yz}) / \sqrt{((1 = r_{xz}^2)(1 - r_{yz}^2))}$$

- 1. Partial correlation for x & y, controlling for z.
- 2. First order partial

$$\mathbf{r}_{xy^*wz} = (\mathbf{r}_{xy^*w} - \mathbf{r}_{xz^*w} * \mathbf{r}_{yz^*w}) / \sqrt{((1 - \mathbf{r}_{xz^*w}^2)(1 - \mathbf{r}_{yz^*w}^2))}$$

- 1. Controlling for both w and z.
- 2. Second order partial.
- c. Spearman's Correlation Coefficient
 - i. So far we've been using Pearson's product moment correlation (r), the traditional method.
 - ii. Spearman's denoted rs
 - iii. Non-parametric coefficient (more resistant)
 - iv. The formula in the book (pg 145) is a little tedius. Look anyway.
 - v. Uses rank
 - 1. Ordering, compensating for equal values.
 - 2. 10, 20, 20, 30 becomes 1, 2¹/₂, 2¹/₂, 4
 - vi. Spearman's coefficient represents the correlation between the ranks.
 - vii. Resistant to outliers.
 - viii. Can identy non-linear relationships too.
 - ix. Excellent when data is already ranked.
- IV. Regression Problem
 - a. How do we get a best-fit line?
 - b. $\hat{y} =$ "the line"
 - c. Deviation = $y_i \tau$ (vertical distance between the real point and the line)
 - d. $\tau = a + bx$
 - e. Want to find the best values for a and b.
 - f. SSResid = $\sum d_i^2 = \sum (y_i \hat{y})^2 = \sum (y_i (a + bx_i))^2$
 - g. By applying some calculus to find the minimum, we get...
 - i. $b = \sum (x \bar{x})(y \bar{y}) / \sum (x \bar{x})^2$
 - ii. $a = \bar{y} b\bar{x}$
 - iii. $b = r (s_y / s_x)$
 - iv. Note that these solutions are unique
 - v. Don't worry about how to get from the calculus to the formula.
 - h. Predicting y given x
 - i. Putting \bar{x} into the equation, you always get \bar{y}
 - ii. Interpolation is okay (predicting y for some x that falls within the range of the data)
 - iii. Extrapolation = Beware! Don't try to go too far from the range of the original data.
 - Equation Forms

i.

- i. Slope-Intercept
 - 1. $\hat{y} = a + bx$
 - 2. Makes mathematical sense, but the value for a often makes no practical sense.
- ii. Point-Slope
 - 1. $\hat{y} = \bar{y} + b(x \bar{y})$
 - 2. Centered Form, or "Empirical Regression Form"
 - 3. Makes practical sense.
- V. How Good is the Line
 - a. Assessing the fit.
 - b. Uses residuals.
 - i. Points near the line are called "smooths"
 - ii. Points farther away from the line are called "outliers"
- V.

- c. Measures of deviation
 - i. $y_i \bar{y}$ (good for univariate data)
 - ii. $y_1 \hat{y}$ (should be smaller on average than $y \bar{y}$)
 - iii. $\hat{y} \bar{y}$ (how far is the line from the mean)
- d. Fundamental Identity of Simple Linear Regression

 - i. $\sum (y_i \bar{y})^2 = \sum (\hat{y} \bar{y})^2 + \sum (y_i \hat{y})^2$ ii. "Total Sum of Squares" = "Regression SS" + "Residual SS"
 - iii. (Residual also called Error)
 - iv. Doesn't make sense for a single point, but for the whole collection it's good.
 - v. $SS_{TOTAL} = SS_{REGRESSION} + SS_{RESIDUAL}$
- e. Degrees of Freedom
 - i. Total (n 1) = Regression(1) + Residual (n 2)
 - ii. (n-1) = 1 + (n-2)
 - iii. How much information do we have for estimation purposes?
 - iv. For perfect regression, SS_{TOTAL} = SS_{REGRESSION}
 - v. For random data, \hat{y} collapses to \bar{y} , SS_{TOTAL} = SS_{RESIDUAL}
- Coefficient of Determination f.
 - i. $R^2 = SS_{REGRESSION} / SS_{TOTAL} = 1 SS_{RESIDUAL} / SS_{TOTAL}$
 - ii. Scale is 0 to 1, often expressed as a percentage.
 - iii. R^2 is just the correlation coefficient squared.
 - iv. $R^2 = 0$ where $SS_{RESIDUAL} = SS_{TOTAL}$
 - v. $R^2 = 1$ where $SS_{RESIDUAL} = 0$
 - vi. See pages 141 & 170
 - 1. Called "Weak" where $0 \le R^2 < 25\%$
 - 2. Called "Moderate" where $25\% \le R^2 < 64\%$
 - 3. Called "Strong" where $64 \le R^2 \le 100\%$
 - vii. This is a very big topic in statistics: it quantifies variability.
- g. Standard Deviation of Regression
 - i. $s_e^2 = \sum (y_i \hat{y})^2 / (n 2) = SS_{RESID} / (n 2)$
 - ii. s_e: Standard deviation of regression
 - iii. How far does a typical observation deviate from the line?
 - iv. This is another important measure of the adequacy of the model.
 - v. Might want to use $s_{\rm e}$ / \bar{y} to put the number in perspective.
- h. Mean Square Residual
 - i. S_e²
 - ii. Example

0.0		
SSRESIDUAL	100	100
SS _{REGRESSION}	100	900
SS _{TOTAL}	200	1000
R^2	50%	90%
s _e ²	10	10

iii. The moral: These numbers mean two different things!

- VI. **Residual Analysis**
 - a. $d_i = r_i = y_i \hat{y}$
 - b. Plot residuals against x.
 - c. Want to see values scattered randomly on the residual plot.
 - Ь Standardized Residual
 - i. Similar to Z-Score (not the same, but similar)
 - ii. Want to see values between -2 and +2.
 - e. Seeing some pattern in the data suggests there's a non-linear relationship.
 - If variability increases (small residuals for small x's, larger residuals for big x's, for f. example), then may need to transform the data.
 - Interesting Points g.
 - i. Outlier: Extreme Y value
 - ii. Leverage Point: Extreme X value

- iii. Influential Point: Both X and Y are extreme
 - 1. Has the ability to greatly influence the data. May create the illusion of linearity when it doesn't really exist, or change the slope.
 - 2. The Remedy: Remove the point and see what effect it has.
- VII. Transforming Data
 - a. Sometimes data doesn't seem to be linear but has a linear relationship "hiding" in it somewhere.
 - b. We'd like to re-express (transform) non-linear data into some linear form.
 - c. x = original value, x' = transformed value.
 - d. Box-Cox Transforms
 - i. $x' = x^p$ for some p
 - ii. The Power Transform Ladder
 - 1. p = 2, square
 - 2. p = 1, no transform
 - 3. $p = \frac{1}{2}$, square-root
 - 4. $p = \frac{1}{3}$, cube-root
 - 5. p = "0" (special case: x' = log(x))
 - 6. p = -1, x' = -1/x (use negative sign to preserve the order of the data)
 - e. Falling Body Example
 - i. S vs. t looks non-linear
 - ii. Could go up the ladder with respect to t
 - iii. Could go down the ladder with respect to S.
 - iv. Typically we'd look at S vs t²
 - f. Use this graphic as a guide for which direction to go (up or down) with respect to either variable.

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK: