Notes - Chapter 2

Quantified Statements

Definitions

A predicate is a sentence that contains a finite number of variables, which becomes a statement when we replace the variables with values.
The domain of the predicate is the set of all possible replacements.

Definition

Let $P(x)$ be a predicate, and let x have domain D. The truth set is the set of all things in D which make $P(x)$ true. The truth set is written $\{x$ in $d \mid P(x)\}$

Definition

Let $\mathrm{P}(\mathrm{x})$ be a predicate with domain D . A universal statement is of the form $\forall \mathrm{x}, \mathrm{P}(\mathrm{x})$ which is read "For all x in D, P of x " It is true when the truth set of $P(x)=D$. It is false if there is at least one element in D that makes $P(x)$ false.

Example

$P(x):|x|=x$
(a) Domain: $x 0 . \quad \forall x \mathrm{P}(\mathrm{x})$ is true.
(b) Domain: all reals $\forall x P(x)$ is false.

Definition

Let $P(x)$ be a predicate with domain D. An existential statement is of the form $\exists x$ in D, $P(x)$ and is read "There exists an x in D, such that P of x." It is true as long as $P(x)$ is true for one x in D. It is only false when $P(x)$ is false for all x in D.

Example

All basketball players are taller than six feet.
Domain: NBA Players.
False: $x=$ Mugsy Boggs and x is shorter than six feet.
Some basketball players are tall.
Domain: NBA Players
True: $x=$ Shaq and x is taller than six feet.

Universal Conditional Statements

$\forall x, P(x) \Rightarrow Q(x)$
For all integers n, if n is even, n^{2} is even.
$\sim(\forall x, P(x)) \Leftrightarrow \exists x, \sim P(x)$
$\sim(\exists x, P(x)) \Leftrightarrow \forall x, \sim P(x)$

Examples

\exists book b such that \forall people p, p has read b .
"There is a book that everyone has read."
Negation: $(\forall$ books $b)(\exists$ person $p) \ni p$ has not read b.
"There is a book that nobody has read"
(\exists book b) $\ni(\forall$ people p$) \mathrm{p}$ has not read b.
Negation: $(\forall$ books $b)(\exists$ person $p) \ni p$ has read b

Examples

"Everybody trusts somebody"
(\forall people p) $(\exists$ person q) $\ni \mathrm{p}$ trusts q
"Somebody trusts everybody"
$(\exists$ person $p) \ni(\forall$ people q) p trusts q

If the square of an integer is even, then the integer is even.
$(\forall \mathrm{n} \in \mathbb{Z})\left(\mathrm{n}^{2}\right.$ even $\Rightarrow \mathrm{n}$ even)
Contrapositive: $(\forall n \in \mathbb{Z})\left(n\right.$ not even $\Rightarrow n^{2}$ not even)
Converse: $\quad(\forall n \in \mathbb{Z})\left(n\right.$ even $\Rightarrow n^{2}$ even)
Inverse: $\quad(\forall n \in \mathbb{Z})\left(n^{2}\right.$ not even $\Rightarrow \mathrm{n}$ not even $)$

Examples

$\forall x$ if $P(x)$ then $Q(x)$
$P(a)$ for some a
$\therefore \mathrm{Q}(\mathrm{a})$
(Universal Modus Ponens)
$\forall x$ if $P(x)$ then $Q(x)$
$\sim Q(a)$ for some a
$\therefore \sim P(a)$
(Universal Modus Tollens)

Theorem

If an integer n is odd then n^{2} is odd.
$\forall x \in \mathbb{Z}$, n odd $\rightarrow \mathrm{n}^{2}$ odd
16 is not odd $\therefore 4$ is not odd

Diagrams

All redheaded people sit in the back row.
George is a redheaded person.
\therefore George sits in the back row.

$p \rightarrow q$
$\sim q \rightarrow r$

