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Notes – Deadlocks 

I. Definition 
a. A set of blocked processes, each holding a resource and waiting to acquire a resource 

held by another process in the set. 
b. Example: P1 has A and needs B.  P2 has acquired B and needs A. 
c. Bridge-Crossing Example: 

i. Have a one-lane bridge 
ii. A car enters from each end so they end up facing off in the middle. 
iii. One car has to back up and let traffic from the other side go through. 

d. Necessary Conditions for a Deadlock 
i. Mutual exclusion: Only one process may use resource R at a time. 
ii. Hold and Wait: A process is holding at least one resource and is waiting for other 

resources (can’t deadlock if you only get to use one thing at a time) 
iii. No preemption: A resource can be released voluntarily only by the process 

holding it.  (If the system can preempt there won’t be a deadlock for long.) 
iv. Circularity: There’s a circular wait relationship (to be explored in detail later) 

II. Resource Allocation Graph 
a. Each process is a vertex 
b. Each resource is a vertex. 
c. Arrows from processes to resources indicate requests. 
d. Arrows from resources to processes indicate what’s currently being held. 
e. We don’t really distinguish between instances of a resource; just draw from one vertex to 

another. 
III. Deadlock Avoidance 

a. More time spent trying to avoid deadlocks = more overhead 
b. None of these algorithms is 100% accurate, just conservative avoidance techniques 
c. The Four Conditions 

i. Mutual Exclusion: We can’t do anything about this.  We need it for non-shared 
resources (though sharable resources don’t require mutual exclusion) 

ii. Hold and Wait 
1. Could restrict processes to holding no more than one resource (not very 

realistic) 
2. Could require processes to request and acquire all resources before 

beginning execution 
a. Better! 
b. Like two-phase locking 
c. Imposing this guarantees no deadlocks, since no processes can 

hold some resources and then request others. 
d. Doesn’t yield an efficient use of resources though.  It prevents 

processes from executing just to avoid the chance of a deadlock! 
e. Some processes may starve too – one needs lots of resources 

but other little processes continually hold some of them 
3. No Preemption 

a. Just allow preemption! 
b. If a process holding some resources requests a new one that’s 

not available, force it to release everything it’s holding. 
c. This certainly eliminates deadlocks.  Whenever there’s a chance 

of a deadlock, just bail out! 
4. Circular Wait 

a. Create a total ordering of all resources. 
b. A process needs to request resources in increasing order. 
c. Certainly guarantees no deadlocks. 
d. Also creates poor CPU utilization – works much like the solution 

for “hold and wait.” 



d. Safe State 
i. The system is in a safe state if there’s some execution order by which all 

processes will finish at the end. 
ii. Depends really on the order in which resources are requested and released. 

IV. Banker’s Algorithm 
a. Processes declare maximum need for resources. 
b. If a request cannot be granted, the process must wait. 
c. When a process completes, resources are all freed. 
d. Terms: 

i. n: number of processes 
ii. m: number of resource types 
iii. Available[J] = k (k available instances of resource type J) 
iv. Max[i, J] = k (process Pi requested maximum k of resource J at) 
v. Allocation[i, J] = k (process Pi has already gotten k instances of J allocated) 
vi. Need[i, J] = k (process Pi needs k additional instances of J).   
vii. So Need[i, J] = Max[i, J] – Allocation[i, J] 

e. Safety Algorithm 
i. Let work and finish be n x m matrices. 

1. work = Available 
2. finish[i] = false for all processes 

ii. Find an i such that: 
1. finish[i] = false 
2. Need[i] ≤ Work (one whole row, i.e. all resources) 
3. If not found, go to step 4. 

iii. Work = Work + Alocation[i] 
1. finish[i] = true 
2. go to step 2 

iv. if finish[i] == true for all i then the system is in a safe state, otherwise it’s not. 
v. The Idea: 
vi. Find a process whose demand for resources can be met right now. 
vii. If it’s found, execute and release its resources. 
viii. If no such process was found… 

1. If it’s because the processes are all done, okay. 
2. If it’s because all processes demand too much, then it’s not a safe state 

f. Resource Request Algorithm 
i. Assume process Pi requests resources 
ii. Let Request[i] be the request vector such that: If Request[i,J]  = k, Pi requests an 

additional k instances of type J 
iii. Should the request be granted? 

1. If Request[i] ≤ Need[i] go to step 2 (otherwise it’s a violation; halt!) 
2. If Request[i] ≤ Available[i]) go to step 3 (otherwise Pi must wait) 
3. Pretend to allocate requested resources to Pi 

a. Available = Request[i] 
b. Allocation[i] += Request[i] 
c. Need[i] -= Request[i] 

4. Run safety algorithm 
a. If safe, really allocate resources to Pi 
b. If unsafe, Pi must wait.  Restore old Available, Allocation, and 

Need (no more pretending) 
V. Deadlock Detection 

a. Allow deadlocks to occur, but then detect them. 
b. Steps 

i. Step 1 
1. Let work be a vector of size m 
2. Let finish be a vector of size n 



3. work = Available 
4. If Allocation[i] == 0 then finish[i] = true else finish[i] = false 

ii. Step 2: Find an i such that finish[i] = false for all i and request[i] ≤ work.  If none 
found, go to step 4. 

iii. Step 3 
1. Work += Allocation[i] (finishes, returns resources) 
2. finish[i] = true 
3. Go to step 2. 

iv. Step 4: If finish[i] = false for some i then the system is deadlocked.  (Pi is 
deadlocked). 

c. This algorithm correctly assesses whether or not the system is in deadlock. 
VI. Recovery from Deadlocks 

a. Once we’ve detected a deadlock, select a “victim” process and roll it back. 
b. Want a low-priority process to roll back if possible. 
c. Also want a victim that hasn’t been running long (so we’ll have less work to do in rolling it 

back) 
d. Don’t want any one process to be selected repeatedly as a victim or it’ll starve. 
e. This algorithm can run much less frequently than deadlock avoidance since there’s no 

real hurry – the deadlock will be there forever if we don’t get around to checking quickly. 
 


