
Benjamin Fenster 
  CS-104 (Lee) 
  18 December 2004 

Hashing 

I. Preliminaries 
a. Key Indexed Array 

i. Stores an item x with key k in the array at position k. a [k] = x 
ii. Pro:  Insertion / access is always O(1) 
iii. Con: If there’s even one element with a large key, we need a huge array 

(example: keys of 0, 2, 3, 5, 1000000) 
b. Want to fix the array size at M 

i. Map keys to integers in (0, M – 1) 
ii. May get two keys mapping to the same position (called a “conflict”)  
iii. On average N / M conflicts 

c. Hash Table 
i. Definition: Hash table is an array where the array index is mapped from a key 

using a hash function 
ii. Note: Large array yields fewer collisions. 
iii. More Space = Faster Search 

d. Hash Function 
i. Given a hash table of size M, hash function is a mapping from any key to a hash 

table address (i.e. array index) 
ii. What makes a good hash function? 

1. Want to minimize collisions 
2. Modular hash function! H(k) = k mod M 
3. M should be a prime number to best minimize collisions 

e. Key Generation 
i. Convert non-integer keys into integers 
ii. Floating Point 

1. If keys are in [s, t] then take k = ((f – s) / (t – s)) * 2b where 2b > M 
2. So if M = 17, use k = ((f – s) / (t – s)) * 25 
3. Results in 0 ≤ k ≤ 2b 

iii. ASCII Keys 
1. Option 1 

a. Add all the individual codes (0 to 127) 
b. Works very well for short keys 
c. Example: Consider a 2-character key 

i. Range of possible keys is 0 to 127 * 2 
ii. So 255 distinct keys are possible 
iii. Have 1282 possible strings (16384) 
iv. So 64 distinct ASCII keys will be converted to a single 

integer key (64 strings to each integer) on average 
d. Example: An 8-character string 

i. 1288 possible strings, almost 1024 possible keys 
ii. About 1288

 / 1024 strings map to each integer key.  Way 
too crowded 

2. Option 2 
a. Transform the keys piece by piece 
b. Treat an ASCII string as a base 128 number 
c. ABD = 64 * 1282 + 66 * 1282 + 68 = … 
d. Generates keys too large to even be stored! 
e. We will convert the string to an integer one character at a time. 
f. Horner’s Rule 

i. P(x) = a0 + a1x + a2x
2 + … + anx

n 
ii. P(x) = a0 + x(a1 + x(a2 + … + x(an)…)) 
iii. P(x) = ((..(an)x + an – 1)x + … + a3)x + a2)x + a1)x + a0 

g. Consider “a long key” (8 characters) 



i. Using Horner’s rule. 
ii. 97 * 1287 + 108 * 1286 + … + 121 * 1276 
iii. (((97 * 128 + 108)127 + 111)127 + …)128 + 121 

h. This is more efficient but we still have the overflow problem 
i. Modulus Equivalence Rule 

i. (a x + b) % M = ((ax % M) + b) % M 
ii. Now calculate key (97 * 128 % M … 

II. Collision Resolution 
a. Separate Chaining 

i. Have some “bucket” structure (perhaps a linked list) to catch conflicts 
ii. May get a long list of elements at the same address.  Then efficiency of the hash 

table drops (starting to look more like a linear search. 
iii. Average length of the chain is N / M = λ 
iv. λ is the “load factor” 
v. Variations 

1. Store the first element in the table itself; only start making a linked list if 
there’s a conflict.  Marginally better. 

2. Overflows are supposed to be rare, so linked lists are fine for bucket 
structures if you want to use separate chaining 

vi. Operations 
1. Find: Hash key and traverse list 
2. Insert: Hash, traverse, put at beginning if not found 
3. Remove: Find(), then remove from list 

vii. Runtime 
1. Chains are not sorted.  Duplicates are illegal 
2. N / M = λ for unsuccessful search, or insertion 
3. 1 + ((N – 1) / M ) / 2) ≈ 1 + λ / 2 for successful search 
4. (At least one probe, average load excluding the element that is already 

counted in that “at least one”) 
b. Open Addressing 

i. Concept 
1. When an item conflicts, try some other address for it. 
2. Need some rule to find an open address 
3. Use addresses hi(k) = (h(k) + f(i)) % M for I = 1, 2, 3, … 
4. Just change f(i) however you like.   

ii. Types 
1. Linear Probing:  f(i) = i 
2. Quadratic Probing: f(i) = i2 
3. Double Hashing: f(i) = i(k % M2 + 1)) for M2 ≠ M 

iii. Problem: Keys may get clustered together.  Goal is to avoid / reduce clustering. 
iv. Operations 

1. Find(k): hash(k).  If not found, probe new addresses of the table until k is 
found or an empty cell is found. 

2. Insert(elt). hash(elt � k). If not empty, probe new addresses until k or 
null found. 

3. Remove(k).  hash(k).  If not found, keep probing until k or empty cell 
found.  Put a deletion marker so the cell won’t be counted empty in future 
searches.  Called a “tombstone.”  Otherwise would need to rehash all the 
elements that originally hashed to the same address as k. 

v. Runtime (Linear Probing) 
1. Unsuccessful:  0.5(1 + 1 / ( 1 – λ )2 )   λ ≤ M 
2. Successful:  0.5 (1 + 1 / (1 – λ) ) 

vi. Quadratic Probing 
1. Tries to alleviate clustering problem. 
2. “Hopping distance” increases each time, so probably get fewer clusters.   



vii. Double Hashing 
1. When there’s a conflict calculate a new address with a new hash function 
2. Further improvement on quadratic probing 

a. Still get some clustering with quadratic probing 
b. From linear, called “primary clustering” 
c. From quadratic, “secondary clustering” 

3. Example 
a. Say h(k) = k % 20   h2(k) = (k % 11) + 1 
b. f(i) = I * (k % M2) + 1) where M2 ≠ M 

4. Runtime 
a. Unsuccessful: 1 / (1 – λ)  
b. Successful: (1 / λ) ln (1 / (1 – λ )) 

III. Dynamic Hashing 
a. Increases hash table size when necessary 
b. Rehashes all items each time the size is changed 
c. Can also reduce size when too few elements are left (but not done in all implementations) 
d. Double size when more than δ full.  Halve size when less than δ full. 
e. This fixes runtime of open addressing, but occasionally an operation will be very slow as 

all elements are rehashed to a bigger / smaller hash table. 
f. Operations 

i. Find(k).  Same as any open addressing scheme 
ii. Insert(Node* n).  if N > δ1M elements after insertion, rehash to a new table of size 

minPrime(2M)  (smallest prime greater than 2M) 
iii. Remove:  If N < δ2M after deletion, rehash to table of size minPrime(M / 2) 

g. Runtime 
i. Rehashing tables O(N) probes 
ii. Inserting N elements takes O(N), rehashing takes O(N) so total O(N) on average 
iii. Still constant runtime for a single operation on average 

IV. Extensible Hashing 
a. Concepts 

i. External hashing (on disk) 
ii. Uses disk accesses as runtime metric 
iii. Extendable hash table made up of directory and data pages (disk pages) 
iv. Closer to “hashed datafile” than a simple index 
v. Have a directory of first few bits of keys and pointers to data (key data) pages 

b. Operations 
i. Find(k).  hash(k), into directory page, then search corresponding data page 
ii. Insert(Node* n) 

1. hash(n � k) into directory 
2. Insert n into the appropriate data page 
3. If that page overflows, split it; expand the directory to cover an additional 
4. Other pages don’t need to split, so two entries point to the same page. 
5. If another split occurs later, directory is okay – just change one pointer. 

iii. Remove(k) 
1. Find(k), remove it. 
2. If underflows, merge with siblings (and shrink directory if applicable) 
3. This isn’t done in all implementations 

c. Runtime 
i. Find, insert, remove take two page accesses – one if directory is cached 
ii. Plus one additional page access to retrieve the record itself 

d. Storage Requirements 
i. Let M be the number of elements that fit on a page.  Let N be the number of 

elements inserted.  Then the number of pages D = N / (0.69 * M) 
ii. On average, pages are 0.69 full. 
iii. Number of pages for directory = O(N 1 + 1/M / M) 


