

Hashing

- I. Preliminaries
 - a. Key Indexed Array
 - i. Stores an item x with key k in the array at position k. a [k] = x
 - ii. Pro: Insertion / access is always O(1)
 - iii. Con: If there's even one element with a large key, we need a huge array (example: keys of 0, 2, 3, 5, 1000000)
 - b. Want to fix the array size at M
 - i. Map keys to integers in (0, M 1)
 - ii. May get two keys mapping to the same position (called a "conflict")
 - iii. On average N / M conflicts
 - c. Hash Table
 - i. Definition: Hash table is an array where the array index is mapped from a key using a hash function
 - ii. Note: Large array yields fewer collisions.
 - iii. More Space = Faster Search
 - d. Hash Function
 - i. Given a hash table of size M, hash function is a mapping from any key to a hash table address (i.e. array index)
 - ii. What makes a good hash function?
 - 1. Want to minimize collisions
 - 2. Modular hash function! $H(k) = k \mod M$
 - 3. M should be a prime number to best minimize collisions
 - e. Key Generation
 - i. Convert non-integer keys into integers
 - ii. Floating Point
 - 1. If keys are in [s, t] then take $k = ((f s) / (t s)) * 2^{b}$ where $2^{b} > M$
 - 2. So if M = 17, use k = $((f s) / (t s)) * 2^5$
 - 3. Results in $0 \le k \le 2^b$
 - iii. ASCII Keys
 - 1. Option 1
 - a. Add all the individual codes (0 to 127)
 - b. Works very well for short keys
 - c. Example: Consider a 2-character key
 - i. Range of possible keys is 0 to 127 * 2
 - ii. So 255 distinct keys are possible
 - iii. Have 128² possible strings (16384)
 - iv. So 64 distinct ASCII keys will be converted to a single integer key (64 strings to each integer) on average
 - d. Example: An 8-character string
 - i. 128⁸ possible strings, almost 1024 possible keys
 - ii. About 128⁸ / 1024 strings map to each integer key. Way too crowded
 - 2. Option 2
 - a. Transform the keys piece by piece
 - b. Treat an ASCII string as a base 128 number
 - c. ABD = $64 \times 128^2 + 66 \times 128^2 + 68 = \dots$
 - d. Generates keys too large to even be stored!
 - e. We will convert the string to an integer one character at a time.
 - f. Horner's Rule
 - i. $P(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$
 - ii. $P(x) = a_0 + x(a_1 + x(a_2 + ... + x(a_n)...))$
 - iii. $P(x) = ((..(a_n)x + a_{n-1})x + ... + a_3)x + a_2)x + a_1)x + a_0$
 - g. Consider "a long key" (8 characters)

- i. Using Horner's rule.
- ii. 97 * 128⁷ + 108 * 128⁶ + ... + 121 * 127⁶
- iii. (((97 * 128 + 108)127 + 111)127 + ...)128 + 121
- h. This is more efficient but we still have the overflow problem
- i. Modulus Equivalence Rule
 - i. (a x + b) % M = ((a x % M) + b) % M
 - ii. Now calculate key (97 * 128 % M ...
- II. Collision Resolution
 - a. Separate Chaining
 - i. Have some "bucket" structure (perhaps a linked list) to catch conflicts
 - ii. May get a long list of elements at the same address. Then efficiency of the hash table drops (starting to look more like a linear search.
 - iii. Average length of the chain is N / M = λ
 - iv. λ is the "load factor"
 - v. Variations
 - 1. Store the first element in the table itself; only start making a linked list if there's a conflict. Marginally better.
 - 2. Overflows are supposed to be rare, so linked lists are fine for bucket structures if you want to use separate chaining
 - vi. Operations
 - 1. Find: Hash key and traverse list
 - 2. Insert: Hash, traverse, put at beginning if not found
 - 3. Remove: Find(), then remove from list
 - vii. Runtime
 - 1. Chains are not sorted. Duplicates are illegal
 - 2. N / M = λ for unsuccessful search, or insertion
 - 3. $1 + ((N 1) / M) / 2) \approx 1 + \lambda / 2$ for successful search
 - 4. (At least one probe, average load *excluding* the element that is already counted in that "at least one")
 - b. Open Addressing
 - i. Concept
 - 1. When an item conflicts, try some other address for it.
 - 2. Need some rule to find an open address
 - 3. Use addresses $h_i(k) = (h(k) + f(i)) \%$ M for I = 1, 2, 3, ...
 - 4. Just change f(i) however you like.
 - ii. Types
 - 1. Linear Probing: f(i) = i
 - 2. Quadratic Probing: $f(i) = i^2$
 - 3. Double Hashing: $f(i) = i(k \% M_2 + 1))$ for $M_2 \neq M$
 - iii. Problem: Keys may get clustered together. Goal is to avoid / reduce clustering.
 - iv. Operations
 - 1. Find(k): hash(k). If not found, probe new addresses of the table until k is found or an empty cell is found.
 - Insert(elt). hash(elt → k). If not empty, probe new addresses until k or null found.
 - Remove(k). hash(k). If not found, keep probing until k or empty cell found. Put a deletion marker so the cell won't be counted empty in future searches. Called a "tombstone." Otherwise would need to rehash all the elements that originally hashed to the same address as k.
 - v. Runtime (Linear Probing)
 - 1. Unsuccessful: $0.5(1 + 1 / (1 \lambda)^2)$ $\lambda \le M$
 - 2. Successful: 0.5 $(1 + 1 / (1 \lambda))$
 - vi. Quadratic Probing
 - 1. Tries to alleviate clustering problem.
 - 2. "Hopping distance" increases each time, so probably get fewer clusters.

- vii. Double Hashing
 - 1. When there's a conflict calculate a new address with a new hash function
 - 2. Further improvement on quadratic probing
 - a. Still get some clustering with quadratic probing
 - b. From linear, called "primary clustering"
 - c. From quadratic, "secondary clustering"
 - 3. Example
 - a. Say h(k) = k % 20 $h_2(k) = (k \% 11) + 1$
 - b. $f(i) = I^* (k \% M_2) + 1)$ where $M_2 \neq M$
 - 4. Runtime
 - a. Unsuccessful: $1 / (1 \lambda)$
 - b. Successful: $(1 / \lambda) \ln (1 / (1 \lambda))$
- III. Dynamic Hashing
 - a. Increases hash table size when necessary
 - b. Rehashes all items each time the size is changed
 - c. Can also reduce size when too few elements are left (but not done in all implementations)
 - d. Double size when more than δ full. Halve size when less than δ full.
 - e. This fixes runtime of open addressing, but occasionally an operation will be very slow as all elements are rehashed to a bigger / smaller hash table.
 - f. Operations
 - i. Find(k). Same as any open addressing scheme
 - ii. Insert(Node^{*} n). if N > δ_1 M elements after insertion, rehash to a new table of size minPrime(2M) (smallest prime greater than 2M)
 - iii. Remove: If N < δ_2 M after deletion, rehash to table of size minPrime(M / 2)
 - g. Runtime
 - i. Rehashing tables O(N) probes
 - ii. Inserting N elements takes O(N), rehashing takes O(N) so total O(N) on average
 - iii. Still constant runtime for a single operation on average
- IV. Extensible Hashing
 - a. Concepts
 - i. External hashing (on disk)
 - ii. Uses disk accesses as runtime metric
 - iii. Extendable hash table made up of *directory* and *data* pages (disk pages)
 - iv. Closer to "hashed datafile" than a simple index
 - v. Have a directory of first few bits of keys and pointers to data (key data) pages
 - b. Operations
 - i. Find(k). hash(k), into directory page, then search corresponding data page
 - ii. Insert(Node* n)
 - 1. hash(n \rightarrow k) into directory
 - 2. Insert n into the appropriate data page
 - 3. If that page overflows, split it; expand the directory to cover an additional
 - 4. Other pages don't need to split, so two entries point to the same page.
 - 5. If another split occurs later, directory is okay just change one pointer.
 - iii. Remove(k)
 - 1. Find(k), remove it.
 - 2. If underflows, merge with siblings (and shrink directory if applicable)
 - 3. This isn't done in all implementations
 - c. Runtime
 - i. Find, insert, remove take two page accesses one if directory is cached
 - ii. Plus one additional page access to retrieve the record itself
 - d. Storage Requirements
 - i. Let M be the number of elements that fit on a page. Let N be the number of elements inserted. Then the number of pages D = N / (0.69 * M)
 - ii. On average, pages are 0.69 full.
 - iii. Number of pages for directory = $O(N^{1+1/M} / M)$