Heaps

I. Priority Queue

a. Introduction
i. This is a specialized form of the general queue
ii. It adds more interface features.
iii. Instead of .Get() and .remove(), implement .findMin(), .RemoveMin().
iv. Could have min-ordered or max-ordered priority queues.
b. Runtimes
i. Using an ordered array:

1. Insert $=O(N)$
2. deleteMin $=O(N)$
3. Must shift all elements out of the way for each operation.
ii. Linked List
4. Insert $=O(N)$
5. deleteMin $=\mathrm{O}(1)$.
iii. Using a binary search tree
6. Average insert $=\mathrm{O}(\log \mathrm{N})$, worst insert $=\mathrm{O}(\mathrm{N})$
7. Average deleteMin $=\mathrm{O}(\log \mathrm{N})$, worst deleteMin $=\mathrm{O}(\mathrm{N})$
iv. Using a binary heap
8. Average insert $=O(1)$, worst insert $=O(\log N)$
9. Average deleteMin $=O(\log N)$, worst insert $=O(\log N)$.
10. There's no case with linear runtime.
11. This is the data structure for implementing a priority queue - to the point that the terms are sometimes used interchangeably.
II. Binary Heaps
a. A heap-ordered complete binary tree
i. Complete means that every level is full except perhaps the leaf level.
ii. Heap-ordered property for min-heap means:
12. For each parent-child pair, parent \leq child.
13. This enforces a partial ordering: not ALL elements have the order relationship, just parents and children.
b. This is typically implemented as an array
i. $\quad \operatorname{parent}(a[I])=a[i / 2]$
ii. children $(\mathrm{a}[1])=\mathrm{a}\left[2^{*} \mathrm{i}\right]$ and $\mathrm{a}\left[2^{*} \mathrm{i}+1\right]$
c. Heapify Operations
i. Fix violations of the heap-order property
14. percolate up, fix up, bubble up (synonyms)
a. $\mathrm{O}(\log \mathrm{N})$
b. Have a parent-child pair where parent $>$ child.
c. Swap them!
d. Swap violating node with its parent - percolating from the bottom up.
15. percolate down, et cetera.
a. $\mathrm{O}(\log \mathrm{N})$
b. Swap the smallest child with the parent.
c. Top-down
ii. The heapify operations are private - they are needed by other operations, but not by client code.
d. Interface Operations
i. insert(Item n). Insert at the end of the heap (a new leaf), then percolate it up to its proper position.
ii. findMin(). It's always at the root. Easy.
iii. deleteMin().
16. Delete the root.
17. Take a node from the end of the heap, place it at the root
18. Percolate down.
iv. delete(Item n)
19. Remove the given item.
20. Replace it with the last of the leaf nodes.
21. Percolate down.
v. decreasePriotiy(Item n , int d); Change the priority to d, percolate up.
vi. increasePriority(Item n , int d): Change priority, percolate down.
e. BuildHeap Operation
i. Not an interface operation.
ii. Build a complete binary tree in any order (fill up the array in any order)
iii. Then percolate nodes down starting with the last node that has a child, working back to the root.
f. Runtime
i. insert(n) $=\mathrm{O}(\log \mathrm{N})$
ii. \quad find $M i n()=O(1)$
iii. deleteMin, delete, increasePriority, decreasePriotiy $=\mathrm{O}(\log \mathrm{N})$
iv. buildHeap with N nodes: $\mathrm{O}(\mathrm{N})$
22. Need to prove linearity
23. To percolate a node down takes (2h) comparisons where h is the height of the node. One comparison for each node at each level.
24. Total number of comparisons is bounded by twice the height of all nodes ($\mathrm{N}-\log (\mathrm{N}+1)$).
a. Worst case (total height max) is when the heap is completely full (and balanced) - the sum of the height of all nodes).
b. $h=2^{h}$ at $0,2^{h-1}$ at $1,2^{h-2}$ at $2,2^{2}$ at $h-2,2$ at $h-1,1$ at h.
c. Sum of all heights $=S=2^{h+1}-1$.
i. $S=h+2(h-1)+2^{2}(h-2)+2^{3}(h-3)+\ldots+2^{h-1}(1)$
ii. $2 S=2 h+2^{2}(h-1)+2^{3}(h-2)+\ldots+2^{h}-h$
iii. Then $S=-h+2+2^{2}+2^{3}+\ldots+2^{h}$
iv. $S=(-h-1)+\left(1+2+2^{2}+\ldots+2^{h}\right)$
v. $S=2^{h+1}-1-(h+1)=N-\log (N+1)$
g. select(k)
i. Select the kth largest or smallest element out of a set of N elements.
ii. One way is to buildHeap() and then deleteMin k times.
iii. Runtime
25. $O(N)+k O(\log N)=O(N+k \log N)$
26. $=O(N+N \log N)$ because $k \leq N$.
27. $=\mathrm{O}(\mathrm{N} \log \mathrm{N})$
28. A more precise analysis may yield a smaller bound but not likely.
III. d-heaps
a. A direct extension of binary heaps
b. d-ary heaps just have $d>2$
c. Otherwise they're the same as with binary heaps
d. Array representation
i. $\quad \operatorname{parent}(a[1])=a[f \operatorname{loor}((i+d-2) / d)]$
ii. children $(a[I])=a[(i-1) * d+2]$ through $a[(i) d+1]$
iii. Example for $\mathrm{d}=3$: $\mathrm{i}=3$, children $=8, \ldots, 10$
iv. Get the number of first and last child, then iterate between.
e. Runtime is $\log _{d} N$ instead of $\log _{2} N$.
f. Dispite the runtime advantage it's harder to find the smallest child among three children than between two.
g. With $d=4,8,2^{n}$, node numbers can be calculated (for parent to child and vice versa) by bit shifting.
IV. Merging Priority Queues
a. Using binary heaps, the runtime of the merge is $\mathrm{O}\left(\mathrm{N}^{1}+\mathrm{N}^{2}\right)=\mathrm{O}(\mathrm{N})$ where $\mathrm{N}=$ $\max \left(\mathrm{N}_{1}, \mathrm{~N}_{2}\right)$
b. Do this by appending the two arrays, then doing buildHeap().
c. Using leftist heaps, skew heaps, binomial queues, the merge takes $\mathrm{O}(\log \mathrm{N})$. A clear advantage!
V. Leftist Tree
a. A binary tree with the "leftist property"
b. Leftist property: for each node v: rank(lchild(v) \geq rank(rchild(v))
i. $\quad \operatorname{rank}(x)$ is the path from x to the nearest non-full (1 or 0 children) node.
ii. rank is the same as 'null path length'
iii. null nodes have rank -1.
c. Properties
i. Rightmost path for any node is the shortest possible path length.
ii. Thus the tree is skewed to the left.
iii. Lemma: Given a tree with r nodes on the rightmost path, the minimum total number of nodes will occur if the tree is completely full. (See slides for proof)
iv. Theorem: A leftist tree with r nodes on the rightmost path has at least $2^{r}-1$ nodes total.
29. Proof: The minimum number of nodes occurs if the tree is completely full. The number of nodes is $2^{h+1}-1$ where $h=r-1$ (convert from the number of nodes to the height).
30. Number of nodes $=2^{r}-1$
v. Corollary: A leftist tree with N nodes has at most floor $(\log (N+1)$ nodes on the rightmost path. Proof: This is immediate from the previous theorem.
VI. Leftist Heap
a. This is a heap-ordered leftist tree: has both heap-ordered property and leftist property
b. Typically represented with linked node (Ichild, rchild) structure. Item key, int rank, *lchild, *rchild)
i. Why? The tree is not complete. It's skewed significantly to the left, so a lot of space would be wasted in the array if it were represented as an array.
ii. Even if storage is cheap, there's a bigger concern.
iii. The merge operation requires swapping subtrees, which would require a lot of array element copies. Just switching two pointers is easier by far!
c. Merge Operation
i. Algorithm
31. Given pointers to two leftist heaps (*h $\left.h_{1},{ }^{*} h_{2}\right)$
32. If h_{1} is null, return h_{2}
33. If h_{2} is null, return h_{1}
34. If $\operatorname{key}\left(h_{1}\right)>\operatorname{key}\left(h_{2}\right)$ then $\operatorname{swap}\left(h_{1}, h_{2}\right)$
35. $h_{1}=$ merge $\left(h_{1}->\right.$ rchild, $\left.h_{2}\right)$
36. If $\operatorname{rank}\left(\mathrm{h}_{1}->\right.$ lchild $)<\operatorname{rank}\left(\mathrm{h}_{1}->\right.$ rchild $)$ then $\operatorname{swap}(\mathrm{l}, \mathrm{r})$.
37. return h_{1}.
ii. Runtime
38. Merge heaps with N_{1}, N_{2} nodes
39. Runtime $\mathrm{O}(\log \mathrm{N})$ where $\mathrm{N}=\max \left(\mathrm{N}_{1}, \mathrm{~N}_{2}\right)$
40. Proof
a. Steps at each invocation of merge() are constant.
b. Runtime is proportional to the number of recursive calls.
c. That is bounded by the number of nodes on the rightmost paths of the two heaps, since merge() is called along that path.
d. By corollary (earlier), these numbers are floor $\left(\log \left(N_{1}+1\right)\right)$ and floor $\left(\log \left(\mathrm{N}_{2}+1\right)\right)$.
e. \quad sum $=O\left(\log N_{1}+\log N_{2}\right)=O(\log N)$ where $N=\max \left(N_{1}, N_{2}\right)$
iii. Other Operations (Runtime)
41. findMin() $\mathrm{O}(1)$
42. h.insert(x$) \equiv \operatorname{merge}(\mathrm{h}, \mathrm{x}) \quad \mathrm{O}(\log \mathrm{N})$
43. h.deleteMin ()\equiv merge(h->left, h->right) $\quad \mathrm{O}(\log \mathrm{N})$
44. buildHeap() $\mathrm{O}(\mathrm{N})$
a. Consider each element as a one-node leftist heap
b. Put in queue
c. Dequeue two, merge them, put the result back in the queue
d. Keep merging until only one heap remains
VII. Skew Heaps
a. Heap-ordered binary tree with no structural property
b. Not a binary heap (not stored in an array)
c. Not leftist heap (doesn't have leftist tree proprety)
d. Runtime
i. Rightmost path can be arbitrarily long, so worst-case runtime is $\mathrm{O}(\mathrm{N})$ per operation.
ii. When performing many (M) operations, $\mathrm{O}(\mathrm{M} \log \mathrm{N})$
iii. So amortized per-operation runtime is $\mathrm{O}(\log \mathrm{N})$
e. Merge Operation
i. Exactly the same as for leftist heaps, but ALWAYS swap the left and right children (unconditionally)
ii. This tends to skew the heap to the left.
f. Other Operations
i. findMin() is easy
ii. insert(), merge()
45. Same as leftist heap
46. insert(key) \equiv merge(heap, key)
iii. deleteMin()
VIII. Binomial Queues
a. Merge takes $\mathrm{O}(\log \mathrm{N})$ time, not $\mathrm{O}(\mathrm{N})$
b. Heap-ordered tree (not necessarily binary)
c. Binomial tree B_{k} has height k formed by attaching two B_{k-1} trees together
i.

ii. The number of nodes at some level I of B_{k} is the binomial coefficient $C(k, I)=$ $k!/(1!(k-1)!)$
47. Permutation
a. $P(k, I)$ is the number of possible ordered combinations of I objects from $k . P(k, I)=k!/(k-I)$!
b. Pick 1: k choices
c. Pick another: $(k-1)$ choices
d. Total for I selections $=k^{*}(k-1)^{*}(k-2)^{*} \ldots$ * $(k-I+1)$
48. Combination
a. Unordered combinations
b. $\quad C(k, I)=k!/(!!(k-1)!)$
d. Binomial Queues Introduction
i. Definition: A forest of binomial queues of distinct heights (note that the order doesn't matter).
ii. Representing Priority Queue
49. Let N be the number of elements in the queue
50. For each " 1 " bit in the binary representation of N at position p, need a binomial tree B_{p}
51. $N=13_{10}=1101_{2}$ so need B_{0}, B_{2}, B_{3}
e. Property: Binomial queue of N elements has at most $\log (N+1)$ binomial trees
i. Proof: Consider n BTs storing N elements
ii. N I sminimum if binary representation is $1111 \ldots .11$ (n bits)
iii. So $N \geq 1+2+2^{2}+\ldots+2^{n-1}$
iv. $N \geq 2^{n}-1$ and $2^{n} \leq N+1$
v. So $n \leq \log (N+1)$ QED
f. Implementation
i. Array of binomial trees where $\operatorname{arr}[i]=B_{i}$
ii. Implement tree as binary using *child and *sibling pointers.
g. Merge
i. Just combine all the trees into one forest.
ii. If two trees have the same height, attach the tree with the larger root to the tree with the smaller root.
iii. If that action causes two trees to have the same height, keep combining.
iv. NB: Summing the binary representation of the numbers of nodes in each of the two queues yields the total number of nodes. The binary representation of that sum should therefore match the new set of trees.
v. Runtime: $\log \mathrm{N}$ where $\mathrm{N}=\max \left(\mathrm{N}_{1}, \mathrm{~N}_{2}\right)$ for the two binomial queues.
52. Worst case is where both queues have all the same heights
53. Best case: $O(1)$
h. Other Operations
i. findMin ()$\quad \mathrm{O}(\log N)$
ii. insert(x) $\quad O(\log N)$
iii. merge $(x, b q) \quad O(\log N)$
iv. deleteMIN() $\quad \mathrm{O}(\log \mathrm{N})$
54. Find B_{i} whose root is min
55. Remove B_{i} from the queue
$\mathrm{O}(\log \mathrm{N})$
56. Remove the root, thus separating all its children $\mathrm{O}(1)$
57. Merge those children and the original queue O(1)
58. Children will always be $\left\{B_{0}, B_{1}, \ldots, B_{i-1}\right\}$
IX. Heaps Runtime Summary

	findMin	deleteMin	insert	buildHeap	merge
Binary Heap	$O(1)$	$O(\log N)$	$O(\log N)$	$O(N)$	$O(N)$
D-ary Heap	$O(1)$	$O(\log N)$	$O(\log N)$	$O(N)$	$O(N)$
Leftist Heap	$O(1)$	$O(\log N)$	$O(\log N)$	$O(N)$	$O(\log N)$
Skew Heap	$O(1)$	$O(\log N)$	$O(\log N)$	$O(N)$	$O(\log N)$
Binomial Queue	$O(\log N)$	$O(\log N)$	$O(\log N 0$	$O(N)$	$O(\log N)$

