

Notes – Overview, Analysis of Algorithms

- I. Course Themes
 - a. Data Structures
 - b. Abstract Data Types
 - c. Algorithms
 - d. Analysis of Algorithms
 - e. Relationships
 - i. ADTs and Data Structures
 - 1. ADTs represent Data Structures
 - 2. Alternative data structures can represent an ADT.
 - 3. Set and List can both represent many data structures. Data structures can represent many ADTs.
 - ii. Data Structures and Algorithms
 - 1. An algorithm is: "A mechanical or recursive computational procedure."
 - 2. Algorithms and DSs are co-related.
 - 3. Writing working code is easy. Getting run time within limits is hard.
- II. Analysis of Algorithms
 - a. Óverview
 - i. We want to show that one algorithm is more efficient than another.
 - ii. Could be done empirically but we're interested in analytic methods.
 - iii. We have a data structure implementing operations on an ADT.
 - iv. We want to write an algorithm to implement a particular operation, so we need some analysis.
 - b. Basics
 - i. Growth Rate of Functions
 - 1. Consider functions of N
 - 2. N log N, N, 2^N , N², log N
 - 3.

- c. Example
 - i. See slides
 - ii. $(a_0 + a_1k) + a_2k$, s[k] = x
 - 1. Scans linearly for x, finds at position k. Then finds partial sum.
 - 2. Some fixed overhead plus amount of time to step through array, plus amount of time to sum array.
- d. Run-Time
 - i. Worst Case (never longer than this)
 - ii. Average (statistically predicted)

- iii. Best ("in your dreams" time)
- iv. We're usually interested in the worst-case time since we can be sure it will never take longer than that.
- III. Relative Growth
 - a. T(N), f(N) functions
 - b. ζ(T(N)), ζ(f(n))
 - c. T(n) = O(f(N)) iff $\zeta(T(N)) \le \zeta(f(N))$
 - d. $T(N) = \Omega(f(N))$ iff $\zeta(T(N)) \ge \zeta(f(N))$
 - e. $T(N) = \theta(f(N))$ iff $\zeta(T(N)) = \zeta(f(N))$
 - f. T(N) = o(f(N)) iff $\zeta(T(N)) < \zeta(f(N))$
- IV. Asymptotic Expressions of Run-Time
 - a. T(N) = O(f(N)) iff $\exists c_0 > 0, n_0 > 0 \ni T(N) \le c_0 f(N)$ for all $N > n_0$.
 - b. That means the same thing as the previous definition.
 - c. $T(N) = \theta(f(N))$ iff T(N) = O(F(N)) and $T(N) = \Omega(f(N))$
 - d. Example
 - i. $T(N) = 3 + 8N + 5N^2$
 - ii. $T(N) = O(N^2)$
 - iii. Proof:
 - iv. Need $c_0 > 0$, $n_0 > 0 \Rightarrow T(N) \le c_0 N^2$
 - v. Choose $n_0 = 1$ arbitrarily
 - vi. $T(N) < c_0 N^2$ for any $c_0 > 16$ (substitute 1 for N and solve). 3 + 5(1) + 8(1) = 16
 - e. Run-Time Bounds
 - i. O(f(N)) means "upper-bound" (worst case)
 - ii. $\Omega(f(N))$ means "lower bound" (best case)
 - iii. $\theta(f(N))$ means "tight bound" (best and worst cases are the same)
- V. Big-O Rules
 - a. If T(N) = O(c f(N)) then T(N) = O(f(N)) where c is a constant.
 - i. This means we're worried only about scale / growth rate.
 - ii. Constants are irrelevant.
 - b. If $T_1(N) = O(f_1(N) \text{ and } T_2(N) = O(f_2(N)) \text{ then...}$
 - i. $T_1(N) * T_2(N) = O(f_1(N) * f_2(N))$
 - ii. and $T_1(N) + T_2(N) = max(O(f_1(N)), O(f_2(N)))$
 - c. If T(N) is a polynomial of degree k then $T(N) = \theta(N^{k})$
 - d. $\log^{k}(N) = O(N)$ for any k
 - i. This shows that logs grow much slower than linear equations.
 - ii. Logarithm to any power will never exceed linear.
 - iii. This rule isn't terribly important. See slides for its proof.
- VI. Basic Rules for Asymptotic Algorithm Analysis
 - a. Non-Recursive
 - i. Loop
 - 1. for I from 1 to N, j from 1 to M
 - 2. O(MN) (constant runtime for each innermost instruction, so pull it out by the first Big-Oh rule)
 - 3. If M = cN for some constant then $O(MN) = O(M^2)$ or $O(N^2)$
 - ii. Sequence
 - 1. One block followed by another.
 - 2. First, O(f(N)), second O(g(N))
 - 3. Total: max(O(f(N)), O(g(N))
 - iii. Conditional Branching
 - 1. If ... then O(f(N)) else O(g(N))
 - 2. Total: Take max
 - 3. We want Big-O, worst case, so take worst side of the 'if'
 - b. Recursive
 - i. Harder

- ii. Need a Recurrence Relation: A mathematical relationship expressing fn as some combination of f_i with i < N
- iii. When formulated as an equation to be solved, called a recurrence equation.
- iv. Example
 - 1. Binary Search
 - 2. Run Time Metric: Number of comparisons performed
 - 3. Problem Size: Number of elements in the search
 - 4. T(N) = T(N/2) + 2 if $N \ge 2$
 - if N = 1 = 1
 - 5. Define $2^n = N$
 - 6. $T(2^n) = T(2^{n-1}) + 2$ 7. $T(2^{n-1}) = T(2^{n-2}) + 2$

 - 8. ...
 - 9. T(2) = T(1) + 2
 - 10. Left with T(N) = T(1) + 2n
 - 11. $T(N) = 2 \log N + 1 = O(\log N)$
 - 12. We've turned a potentially nasty division problem into subtraction.
- v. Example
 - 1. MinMax
 - 2. Runtime = Number of Comparisons
 - 3. Problem Size = Number of Elements
 - 4. T(N) = 2(T(N/2)) + 2 if $N \ge 2$
 - if N = 0= 0
 - 5. $T(N) = T(2^n) = 2^1T(2^{n-1}) + 2$
 - 6. $2^{1}T(2^{n-1}) = 2^{2}T(2^{n-2}) + 2^{2}$ 7. $2^{2}T(2^{n-2}) = 2^{3}T(2^{n-3}) + 2^{3}$

 - 8. ..
 - 9. $2^{n-1}T(2) = 2^{n}T(1) + 2^{n}$
 - 10. Collapses to: $T(2^n = 2^nT(1) + 2^n + 2^{n-1} + ... + 2^2 + 2$ 11. = $2^n + 2^{n-1} + ... + 2^2 + 2$

 - 12. = $2^{n} ((1 \frac{1}{2}^{n}) / (1 \frac{1}{2})) = 2^{n+1} 2 = 2(2^{n}) 2 = 2N 2 = O(N)$
 - 13. We get there using the geometric sum formula.
- vi. Example
 - 1. Fibonacci Numbers
 - 2. T(N) = T(N 1) + T(N 2) if $N \ge 2$ if N < 2
 - = 0
 - 3. Note that the equation looks just like the function itself.
 - 4. Fib(N) = $\phi^n / \sqrt{5}$ where $\phi = (1 + \sqrt{5}) / 2$
 - 5. So let's say T(N) = Fib(N)
 - 6. In other words, T(N) itself behaves like Fibonacci numbers
 - 7. So $T(N) = O(\phi^n)$ -- exponential!
 - 8. Exercise: Now solve this the same way as the Min-Max numbers.