
Benjamin Fenster
 CS-103 (Skalka)
 9 October 2003

Mutation and State

I. Reference Cells
a. Most basic mutable entity
b. Essentially a memory location, similar to a pointer but completely transparent.
c. Example

i. let x = ref 1;;
ii. !x (* dereference *)
iii. x � {mutable contents = 1}
iv. x := 2 (* update, distinct from = *)
v. !x � 2

d. No pointer arithmetic “or any nasty tricks like that”
e. Typing Rules

i. Creation: ref e : τ ref iff e : τ
ii. Dereferencing: !e : τ iff e : τ ref
iii. Assignments: e := e’ : unit iff e : τ ref and e’ : τ

1. Everything has a type. The choice of unit is arbitrary
2. The purpose of () is as a placeholder. Anything that has a unit type

generally signals the programmer that whatever is happening is side
effectual.

f. Evaluation Rules
i. Creation: ref e � c, where c is a reference cell, with v stored at c, where e � v
ii. Dereferencing: !e � v iff e � c and v is currently stored at c
iii. Assignment

1. e := e’ � () iff e � c
2. Side effect: Contents of c updated with v iff e’ � v
3. In general, side effect is some effect of computation that’s distinct

from evaluation.
g. Example

i. let x = ref 10
ii. x = 10 NO! Type error (int = int ref)
iii. Aliasing

1. let y = ref x;;
2. let z = ref x;;
3. (!y) := 0
4. !(!z) � 0
5. !x � 0
6. “Mutation leads to aliasing, aliasing leads to pain.”

II. Sequencing and Evaluation Order
a. Now the order in which statements are evaluated matters.
b. Sequencing: e1; e2 (first e1 then e2)
c. e1; e2 : τ iff e1 : τ’ and e2 : τ
d. Evaluation

i. e1; e2 � v iff e1 � v’ and e2 � v (in that order) with implicit side-effects
ii. Value of e1 is essentially thrown away!
iii. If e1 does not have type unit, the compiler reports a warning.

e. Example
i. let x = ref 0;;
ii. x := 1; x := 2; x := 3; !x;; � 3
iii. type r = {a : unit; b : unit}
iv. {a = (x := 1); b = (x := 2) }
v. !x � 1

f. Example
i. (x := 1; (fun x -> x))(x := 2; 1) � 1
ii. !x � 2

III. Mutable Records
a. Slightly more complex form
b. type mutrec = {mutable a : int; b : int};;
c. let mr = {a = 1; b = 2}
d. mr.a � 1
e. mr.a <- 3
f. mr.a � 3
g. mr.b <- 5 NO!
h. Reference cells are really just syntactic sugar for mutable records with one field.

i. type ‘a ref = {mutable contents : ‘a}
ii. ref e � {contents = e}
iii. !e � e.contents
iv. e := e’ � e.contents <- e’
v. # let a = ref 5;;
vi. – val a : int ref = {contents = 5}

IV. The Values Restriction
a. Example

i. let x = ref (fun x -> x)
ii. x : (‘a -> ‘a) ref
iii. let f y = (!x)y : ‘a -> ‘a
iv. (Remember static typing!)
v. x := (fun x -> x + 1)
vi. f(“uh-oh”) still looks valid but no longer makes sense!

b. This has been a major topic for years
c. Andrew Wright in 1995 proposed a solution known as “The Values Restriction”

i. Only values can have polymorphic types.
ii. let x = (fun x -> x : ‘a -> ‘a
iii. let x = ref (fun x -> x)

1. In standard ML this won’t be allowed.
2. In OCaml it gets type (_’a -> _’a)
3. This is a placeholder that will be filled in once it gets used for the first

time.
iv. let f y = (!x) y : _’a -> _’a)
v. f 1 � 1

1. Now the type of f is (int -> int)
2. The type of x is (int -> int)

vi. f(“uh-oh”) NO! Not well typed!
d. This is a simple solution.

i. Many more complex ideas were suggested.
ii. Ultimately a compiler was written to implement this solution and millions of

lines of existing code were compiled.
iii. Only a few places had problems and those problems were easily fixed.
iv. The “restriction” didn’t seem to restrict normal / correct use of the language,

so it was adopted.
e. Eta-Conversion

i. Example
1. let duplicate = map (fun x -> (x, x))
2. map : (‘a -> ‘b) -> ‘a list -> ‘b list
3. duplicate : _’a list -> _’a * _’a list
4. It’s no longer polymorphic!

ii. The way around that problem is to wrap it in a function.
1. let dupliate = (fun x -> map (fun x -> (x, x)))
2. This is equivalent, but it’s wrapped in a lambda abstraction so now

it’s a value (not an application) and the values restriction doesn’t
apply.

V. Why Have Mutation?
a. Purists say “no reason!”
b. let rec fibnum x = match x with 0 -> 1 | 1 -> 1 | x -> fibnum(x – 1) + fibnum(x – 2)
c. This is a naïve implementation – it’s extremely exponential.
d. Memoization: Uses mutation / mutable reference cells to store and lookup values

previously computed. Now the function becomes linear.

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK:

