The Benjamin Fenster
CS-103 (Skalka)

UN IVERSITY 9 October 2003

o VERMONT

Mutation and State

l. Reference Cells
a. Most basic mutable entity
b. Essentially a memory location, similar to a pointer but completely transparent.
c. Example
i. letx=refl;;
ii. Ix (*dereference *)
iii. x U {mutable contents = 1}
iv. X:=2 (*update, distinct from = *)
v. IxU2
d. No pointer arithmetic “or any nasty tricks like that”
e. Typing Rules
i. Creation:refe:trefiffe:1
ii. Dereferencing: le:tiffe: 1 ref
iii. Assignments: e:=e€’:unitiffe:trefande’:t
1. Everything has a type. The choice of unit is arbitrary
2. The purpose of () is as a placeholder. Anything that has a unit type
generally signals the programmer that whatever is happening is side
effectual.
f. Evaluation Rules
i. Creation: ref e U c, where c is a reference cell, with v stored at c, where e 4 v
ii. Dereferencing: !le viff e U c and v is currently stored at ¢
iii. Assignment
1. e=e'l(iffedc
2. Side effect: Contents of ¢ updated with viffe’ U v
3. In general, side effect is some effect of computation that's distinct
from evaluation.
g. Example

i. letx=refl0

ii. x=10NO! Type error (int = int ref)

iii. Aliasing
1. lety=refx;
2. letz=refx;;
3. (ly):=0
4. (1z)40
5. x40
6. “Mutation leads to aliasing, aliasing leads to pain.”

I. Sequencing and Evaluation Order
a. Now the order in which statements are evaluated matters.
b. Sequencing: ej; e, (first e; then ey)
C. e;e: Tiffe;:Tande,: 1
d. Evaluation
i. e;e;lviffe; v ande, v (inthat order) with implicit side-effects
ii. Value of e; is essentially thrown away!
ii. If e; does not have type unit, the compiler reports a warning.
e. Example
i. letx=ref0;
i. x =L x=2;x:=3;x;; 43
ii. typer={a:unit; b: unit}
iv. {a=(x:=1);b=x:=2)}
v. IxU1
f. Example
i x=1;(funx->x)(x:=2;1) 41
i. IxU2

Mutable Records

Slightly more complex form

type mutrec = {mutable a : int; b : int};;

letmr={a=1;b=2}

mradll

mr.a <- 3

mral 3

mr.b <-5 NO!

Reference cells are really just syntactic sugar for mutable records with one field.

S@mooooTp

i.
ii.
iii.
iv.
V.
Vi.

type ‘a ref = {mutable contents : ‘a}
ref e {contents = e}

le U e.contents

e:=e' | e.contents <- €’
#leta=ref5;;

—val a : int ref = {contents = 5}

V. The Values Restriction
a. Example

V.
Vi.

let x = ref (fun x -> X)

x: (‘a->"a) ref

letfy=(Xx)y :‘a->‘a

(Remember static typing!)

x:=(funx->x+1)

f(*uh-oh”) still looks valid but no longer makes sense!

b. This has been a major topic for years
c. Andrew Wright in 1995 proposed a solution known as “The Values Restriction”

Only values can have polymorphic types.
letx =(funx->x:‘a->"‘a
let x = ref (fun x -> X)
1. In standard ML this won't be allowed.
2. InOCaml it getstype (_'a-> _'a)
3. This is a placeholder that will be filled in once it gets used for the first

time.
iv. letfy=(x)y: _'a->_'a)
v. f1U1
1. Now the type of fis (int -> int)
2. The type of x is (int -> int)
vi. f(“uh-oh™) NO! Not well typed!

d. This is a simple solution.

i.

ii.
iii.
iv.

Many more complex ideas were suggested.

Ultimately a compiler was written to implement this solution and millions of
lines of existing code were compiled.

Only a few places had problems and those problems were easily fixed.

The “restriction” didn’t seem to restrict normal / correct use of the language,
so it was adopted.

e. Eta-Conversion

Example
1. let duplicate = map (fun x -> (x, X))
2. map: (‘a->'b) ->‘alist-> ‘b list
3. duplicate: _'alist-> _'a* ’alist
4. It's no longer polymorphic!
The way around that problem is to wrap it in a function.
1. let dupliate = (fun x -> map (fun x -> (x, x)))
2. This is equivalent, but it's wrapped in a lambda abstraction so now
it's a value (not an application) and the values restriction doesn’t

apply.

Why Have Mutation?

a.

b.
C.
d

Purists say “no reason!”

let rec fibonum x = match x with 0 -> 1 | 1 -> 1 | x -> fibnum(x — 1) + fibnum(x — 2)
This is a naive implementation — it's extremely exponential.

Memoization: Uses mutation / mutable reference cells to store and lookup values
previously computed. Now the function becomes linear.

ERROR: undefi nedfi | ename
OFFENDI NG COVMAND: </ FONT>

STACK:

