The Benjamin Fenster

UNIVERSITY s Ostober 2008

o VERMONT

Type Declarations

l. Type Declarations as Abbreviations
a. type numeric =int
b. type intStack = int list
c. type student = string * int * float (* name, ssn, G PA *)
d. Parameterized by Type Variables
i. type ‘a stack ="‘alist
ii. NB: Any type variable appearing on the right side of a type declaration must
appear also on the left side (that is, must be bound)
ii. type stack = ‘a list (NO!)

Il. Variants
a. Abbreviations don't add anything NEW. Variants give truly new subjects for the
program.

b. Can take different shapes (thus “Variants”)
c. Example: Binary Trees
i. type ‘atree = Leaf | Node of ‘atree * ‘a* ‘atre e
ii. NB: This is a recursive type definition
iii. Leaf has no value — a leaf is really at the edge (like the NULL pointer in C++)
iv. Node(Node(Leaf, 2, Leaf), 1, Leaf(Node(Leaf, 6, Lea f),
5, Leaf))
d. Deconstruction
i. Pattern matching
ii. The patterns are defined entirely by the types.

ii. letrecinordert=match t with Leaf ->[] | Node(tl,
v, tr) -> (inorder tl) @ [v] @ (inorder tr) : ‘a tr ee ->
‘a list

iv. NB: @ is list append
e. Recursive vs. Non-Recursive Datatypes
i. Non-Recursive Definitions
1. type ‘a option = None | Some of ‘a
2. Used when a function may or may not return a value.
3. letfx=if (p(x) then Some(x + 1) else None
ii. Recursive
1. Don't forget to have a basis for a recursive datatype!
2. type circular = Circ of Circular
3. In some languages this definition is meaningful, but not OCaml
f. Capturing the behavior of a tree
i. lettreefold basis step tree = match t with Leaf ->

basis | Node(lt, v, rt) -> step(v, treefold basis s tep
It, treefold basis step tr) : ‘a -> (('b * ‘a * *a) ->
‘a) -> ‘b tree -> ‘a

ii. letinorder = treefold [] (fun (v, It, rt) -> It @ V] @
rt) : ‘a tree -> ‘alist

ii. let preorder = treefold [] (fun (v, It, rt) -> [v] @It

@ rt) : ‘atree -> ‘a list
Il Records
a. Like structs in C/C++
b. Collections of named values.
c. The difference is that, per the functional programming norm, fields are immutable.
d. Example
i. type student = { name : string ; email : string; gp a:
float }

ii. letbob ={name ="bob”; email = “bob@zo00.uvm.edu”; gpa
=3.6}

iii. Order in which field are given values is arbitrary

iv. Cannot partially define the type. Must give a value for all fields.

v. Field names are unique! type xyz ={ name : string; } will replace the old
type!

vi. bob.gpa ! 3.6

e. Formalities

i. Giventyper={l 10 T, el onr TR}

ii. Typing Rules
1. {li=eq ...;lh=e}:riffvl<i<n,g:T
2. el:yiffe:rand1<i<n

iii. Evaluation
1. {li=eq ..;lh=e} U {li=vy; ...;lh=v}iffY1<i<nande; v

evaluated in right-to-left order

2. el bvpiffed {ly=vy ...;lh=v}and1<i<n

iv. Pattern matching on records
1. typer={a:int;b:int}
2. letproject afa=x;b=_}=x
3. typer={a:int* float; b = int}
4. letproject al={a=(x,);b=_1}=x

ERROR: undefinedfilename
OFFENDING COMMAND

STACK:

