## Higher Order Functions

I. List
a. We want to double all numbers in a list

```
i. let rec double_all 1 = match l with [] -> [] |
        (x::xs) -> (2*x)::(double_all(xs))
ii. : int list \(->\) int list
```

b. Convert all numbers in list to floats
i. let rec double_all $1=$ match 1 with [] -> [] | (x::xs) > (float x)::float_all(xs)
ii. :int list -> float list
c. Structure of these two is nearly identical
d. Can be seen as an abstract pattern of control. We could define a function that captures that pattern.
e. let rec map $f$ l = match l with [] -> [] | (x::xs) $->$ (f $x$ )::(map f xs)
i. NB: This is implemented as List.map in the OCaml library
ii. map : (`a -> `b) -> 'a list -> `b list iii. let double_all \(=\operatorname{map}(f u n x->2 * x\) ) iv. let float_all \(=\operatorname{map}(f u n x->f l o a t ~ x)\) f. Example i. let graph \(=[(1.0,3.5) ;(2.2,4.6) ;(4.8,9.2)]\) ii. let xcoords \(=\operatorname{map}(f u n(x, y)->x)\) iii. xcoords graph \(\Downarrow[1.0 ; 2.2 ; 4.8]\) iv. graph : `a * `b list -> `a list
II. Mathematical Induction
a. let rec fact $n=$ match $n$ with $0->1 \mid n->n * \operatorname{fact}(n-1)$
b. let rec expt $n=$ match $n$ with $0 \rightarrow 1 \mid n->2 * \operatorname{expt}(\mathrm{n}-1)$
c. Again, very similar structure. Can capture this mathematical induction definition in a higher-order function.
d. let rec math_ind basis step $n=$ match $n$ with 0 -> basis | $n->$ step ( $n$, math_ind basis step ( $n-1$ )
i. let fact $=$ math_ind 1 (fun ( $n, n^{\prime}$ ) $->n^{*} n^{\prime}$ )
ii. let expt $=$ math_ind 1 (fun ( $n, n^{\prime}$ ) $->2 * n^{\prime}$ )
iii. step defines how we combine the nth element with the result of the recursive call
iv. math_ind : `a -> ((int * `a) -> `a) -> int -> `a
III. List Induction
a. Mathematical induction (i.e. induction on natural numbers) is just a special case of induction.
b. Now we'll consider list induction.
c. Prove that a property $p$ holds for an arbitrary list
i. Basis: Prove that $p([])$ holds
ii. IH: Assume that $P(I)$ holds for some list I
iii. Induction step: Prove that $p(x:: I)$ holds.
d. Example
i. let rec length $I=$ match $\mid$ with []$->0 \mid(x:: x s)->1+$ length( $x s)$

1. Basis: Immediate since $n=0$ and length [] $\Downarrow 0$ by definition.
2. IH: length $\left[v_{2} ; \ldots ; v_{n}\right] \Downarrow n-1$
3. Step: length $\left[\mathrm{v}_{1} ; \ldots ; \mathrm{v}_{\mathrm{n}}\right]=1+$ length $\left[\mathrm{v}_{2} ; \ldots ; \mathrm{v}_{\mathrm{n}}\right]$. By the IH , length $\left[\mathrm{v}_{2}\right.$; $\left.\ldots ; v_{n}\right] \Downarrow n-1 \ldots$ et cetera
ii. let rec list_sum I = match I with [] -> $0 \mid(x:: x s)->x+\operatorname{list}$ _sum( $x s$ )
iii. Again, we'll generalize it.
4. let rec list_ind basis step $l=$ match l with [] -> basis (x::xs) -> step(x, list_ind basis step xs)
5. let length $=$ list_ind 0 (fun ( $x, x^{\prime}$ ) $->1+x^{\prime}$ )
6. let list_sum $=$ list_ind 0 (fun ( $x, x^{\prime}$ ) $\left.->x+x^{\prime}\right)$
7. list_ind : `a -> ((`b*`a) -> `a) -> `b list -> `a
8. length : `a list -> int
9. list_sum : int list -> int
10. NB: list_ind is usually called foldr in the community
iv. let forall $p l=f o l d r$ true (fun ( $x, x^{\prime}$ ) $\left.->p(x) \& \& x^{\prime}\right)$ v. let exists $\mathrm{pl}=$ (* left as exercise *)
e. NB: -> operator is right associative

ERROR: undefinedfilename OFFENDING COMMAND: </FONT>

STACK:

