
Benjamin Fenster
 CS-103 (Skalka)
 5 October 2003

Higher Order Functions

I. List
a. We want to double all numbers in a list

i. let rec double_all l = match l with [] -> [] |
(x::xs) -> (2*x)::(double_all(xs))

ii. : int list -> int list
b. Convert all numbers in list to floats

i. let rec double_all l = match l with [] -> [] | (x:: xs) -
> (float x)::float_all(xs)

ii. :int list -> float list
c. Structure of these two is nearly identical
d. Can be seen as an abstract pattern of control. We could define a function that

captures that pattern.
e. let rec map f l = match l with [] -> [] |

(x::xs) -> (f x)::(map f xs)
i. NB: This is implemented as List.map in the OCaml library
ii. map : (‘a -> ‘b) -> ‘a list -> ‘b list
iii. let double_all = map (fun x -> 2 * x)
iv. let float_all = map (fun x -> float x)

f. Example
i. let graph = [(1.0, 3.5); (2.2, 4.6); (4.8, 9.2)]
ii. let xcoords = map (fun (x, y) -> x)
iii. xcoords graph � [1.0; 2.2; 4.8]
iv. graph : ‘a * ‘b list -> ‘a list

II. Mathematical Induction
a. let rec fact n = match n with 0 -> 1 | n -> n * fac t(n – 1)
b. let rec expt n = match n with 0 -> 1 | n -> 2 * exp t(n – 1)
c. Again, very similar structure. Can capture this mathematical induction definition in a

higher-order function.
d. let rec math_ind basis step n = match n with 0 -> b asis |

n -> step(n, math_ind basis step (n – 1)
i. let fact = math_ind 1 (fun (n, n’) -> n * n’)
ii. let expt = math_ind 1 (fun (n, n’) -> 2 * n’)
iii. step defines how we combine the nth element with the result of the

recursive call
iv. math_ind : ‘a -> ((int * ‘a) -> ‘a) -> int -> ‘a

III. List Induction
a. Mathematical induction (i.e. induction on natural numbers) is just a special case of

induction.
b. Now we’ll consider list induction.
c. Prove that a property p holds for an arbitrary list

i. Basis: Prove that p([]) holds
ii. IH: Assume that P(l) holds for some list l
iii. Induction step: Prove that p(x::l) holds.

d. Example
i. let rec length l = match l with [] -> 0 | (x::xs) -> 1 + length(xs)

1. Basis: Immediate since n = 0 and length [] � 0 by definition.
2. IH: length [v2; …; vn] � n –1
3. Step: length [v1; …; vn] = 1 + length[v2; …; vn]. By the IH, length [v2;

…; vn] � n – 1 … et cetera
ii. let rec list_sum l = match l with [] -> 0 | (x::xs)->x + list_sum(xs)
iii. Again, we’ll generalize it.

1. let rec list_ind basis step l = match l with [] ->
basis | (x::xs) -> step(x, list_ind basis step xs)

2. let length = list_ind 0 (fun (x, x’) -> 1 + x’)
3. let list_sum = list_ind 0 (fun (x, x’) -> x + x’)
4. list_ind : ‘a -> ((‘b*‘a) -> ‘a) -> ‘b list -> ‘a
5. length : ‘a list -> int
6. list_sum : int list -> int
7. NB: list_ind is usually called foldr in the community

iv. let forall p l = foldr true (fun (x, x’) -> p(x) && x’)
v. let exists pl = (* left as exercise *)

e. NB: -> operator is right associative

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK:

