

The UNIVERSITY of VERMONT

I.	List	
	a.	We want to double all numbers in a list
		i. let rec double_all l = match l with [] -> []
		$(x::xs) \rightarrow (2*x)::(double_all(xs))$
		Ⅱ. : int list -> int list
	b.	Convert all numbers in list to floats
		i. let rec double_all l = match l with [] -> [] $ $ (x::xs) -
		<pre>> (float x)::float_all(xs)</pre>
		ii. :int list -> float list
	C.	Structure of these two is nearly identical
	d.	Can be seen as an abstract pattern of control. We could define a function that
	~	captures that pattern.
	e.	let rec map I I = match I with $[] \rightarrow []$
		i NB: This is implemented as List map in the OCamI library
		i. The tribulation in the list in the obtain indiation $(2 - 2)^{2}$
		iii let double all = map (fup x -> 2 * x)
		iv let float all = map (fun x -> float x)
	f.	Example
		i. let graph = $[(1.0, 3.5); (2.2, 4.6); (4.8, 9.2)]$
		ii. let xcoords = map (fun (x, y) → x)
		iii. xcoords graph ↓ [1.0; 2.2; 4.8]
		iv. graph : `a * `b list -> `a list
II.	Mathematical Induction	
	a.	let rec fact n = match n with 0 -> 1 n -> n * fact(n - 1)
	b.	let rec expt n = match n with 0 -> 1 n -> 2 * expt(n - 1)
	c.	Again, very similar structure. Can capture this mathematical induction definition in a higher-order function.
	d.	let rec math_ind basis step n = match n with 0 -> basis
		n -> step(n, math_ind basis step (n - 1)
		i. let fact = math_ind 1 (fun (n, n') -> n * n')
		<pre>ii. let expt = math_ind 1 (fun (n, n') -> 2 * n')</pre>
		iii. step defines how we combine the nth element with the result of the
		recursive call
	Lint	IV. math_ind : 'a -> ((int * 'a) -> 'a) -> int -> 'a
	LISI	Mathematical induction (i.e. induction on natural numbers) is just a special case of
	а.	induction
	b.	Now we'll consider list induction.
	C.	Prove that a property p holds for an arbitrary list
		i. Basis: Prove that p([]) holds
		ii. IH: Assume that P(I) holds for some list I
		iii. Induction step: Prove that p(x::I) holds.
	d.	Example
		i. let rec length I = match I with [] -> 0 (x::xs) -> 1 + length(xs)
		1. Basis: Immediate since $n = 0$ and length [] $\Downarrow 0$ by definition.
		2. III: length $[V_2;; V_n] \neq n-1$ 2. Stop: length $[V_2;; V_n] = 1$, length $[V_2;, V_n]$. By the IU length $[V_2;; V_n] = 1$.
		5. Step. length $[v_1,, v_n] = 1 + length [v_2,, v_n]$. By the III, length $[v_2,, v_n]$.
		ii let rec list sum I = match I with [] -> Ω (x··xs)->x + list sum(xs)

iii. Again, we'll generalize it.

- 1. let rec list_ind basis step l = match l with [] ->
 basis | (x::xs) -> step(x, list_ind basis step xs)
- 2. let length = list_ind 0 (fun $(x, x') \rightarrow 1 + x'$)
- 3. let list_sum = list_ind 0 (fun $(x, x') \rightarrow x + x'$)
- 4. list_ind : 'a -> (('b*'a) -> 'a) -> 'b list -> 'a
- 5. length : `a list -> int
- 6. list_sum : int list -> int
- 7. NB: list_ind is usually called foldr in the community
- iV. let forall $p = foldr true (fun (x, x') \rightarrow p(x) \& x')$ V. let exists pl = (* left as exercise *)
- e. NB: -> operator is *right* associative

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK: