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Higher Order Functions 

I. List 
a. We want to double all numbers in a list 

i. let rec double_all l = match l with [] -> [] |  
(x::xs) -> (2*x)::(double_all(xs))  

ii.  : int list -> int list  
b. Convert all numbers in list to floats 

i. let rec double_all l = match l with [] -> [] | (x:: xs) -
> (float x)::float_all(xs)  

ii. :int list -> float list  
c. Structure of these two is nearly identical 
d. Can be seen as an abstract pattern of control.  We could define a function that 

captures that pattern. 
e. let rec map f l = match l with [] -> [] |  

(x::xs) -> (f x)::(map f xs)  
i. NB: This is implemented as List.map in the OCaml library 
ii. map : (‘a -> ‘b) -> ‘a list -> ‘b list  
iii. let double_all = map (fun x -> 2 * x)  
iv. let float_all = map (fun x -> float x)  

f. Example 
i. let graph = [(1.0, 3.5); (2.2, 4.6); (4.8, 9.2)]  
ii. let xcoords = map (fun (x, y) -> x)  
iii. xcoords graph � [1.0; 2.2; 4.8]  
iv. graph : ‘a * ‘b list -> ‘a list  

II. Mathematical Induction 
a. let rec fact n = match n with 0 -> 1 | n -> n * fac t(n – 1)  
b. let rec expt n = match n with 0 -> 1 | n -> 2 * exp t(n – 1)  
c. Again, very similar structure.  Can capture this mathematical induction definition in a 

higher-order function. 
d. let rec math_ind basis step n = match n with 0 -> b asis |  

n -> step(n, math_ind basis step (n – 1)  
i. let fact = math_ind 1 (fun (n, n’) -> n * n’)  
ii. let expt = math_ind 1 (fun (n, n’) -> 2 * n’)  
iii. step  defines how we combine the nth element with the result of the 

recursive call 
iv. math_ind : ‘a -> ((int * ‘a) -> ‘a) -> int -> ‘a  

III. List Induction 
a. Mathematical induction (i.e. induction on natural numbers) is just a special case of 

induction. 
b. Now we’ll consider list induction. 
c. Prove that a property p holds for an arbitrary list 

i. Basis: Prove that p([]) holds 
ii. IH: Assume that P(l) holds for some list l 
iii. Induction step: Prove that p(x::l) holds. 

d. Example 
i. let rec length l = match l with [] -> 0 | (x::xs) -> 1 + length(xs) 

1. Basis: Immediate since n = 0 and length [] � 0 by definition. 
2. IH: length [v2; …; vn] � n –1 
3. Step: length [v1; …; vn] = 1 + length[v2; …; vn].  By the IH, length [v2; 

…; vn] � n – 1  … et cetera 
ii. let rec list_sum l = match l with [] -> 0 | (x::xs)->x + list_sum(xs) 
iii. Again, we’ll generalize it. 



1. let rec list_ind basis step l = match l with [] -> 
basis | (x::xs) -> step(x, list_ind basis step xs)  

2. let length = list_ind 0 (fun (x, x’) -> 1 + x’)  
3. let list_sum = list_ind 0 (fun (x, x’) -> x + x’)  
4. list_ind : ‘a -> ((‘b*‘a) -> ‘a) -> ‘b list -> ‘a  
5. length : ‘a list -> int  
6. list_sum : int list -> int  
7. NB: list_ind is usually called foldr in the community 

iv. let forall p l = foldr true (fun (x, x’) -> p(x) &&  x’)  
v. let exists pl = (* left as exercise *)  

e. NB: ->  operator is right associative 
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