The Benjamin Fenster
CS-103 (Skalka)

UN IVERSITY 21 September 2003

o VERMONT

Notes — Types (2)

l. Scope
a. NB: OCaml uses static scope as do almost all modern PLs.
b. Example
i. letx=1;
ii. letaddx = (fun (y:int) ->x +y);;
ii. letx=2;
iv. addx(1) ¥ _
c. Static
i. x will always refer to the x that was in scope at the time of the function
declaration
i. addx(1l) U2

d. Dynamic
i. Uses whatever x is in scope at the time of the function call
i. addx(1) U3
e. Static is more practical and more theoretically appealing.
I. Type Inference
a. letx: T=e ;ine

b. We've been assuming x has type T when type-checking e,
c. (fun(x:1)->¢€)
d. OCaml has a much smarter type analysis called “type inference” or “type
reconstruction”

e. We could write that same statement as (fun x-> )
f. Example

i. (funx->x+1);

ii. OCaml type inference analysis infers that x must be an int.

iii. The function’s type is int -> int
g. Another Example:letx=1+2in5*x
h. This is a really deep topic to be discussed in detail in the second half of the semester.
i. This is an order of magnitude greater in complexity than regular type checking.
j- Infact, it results in an algorithm of exponential complexity.
k. Why isn't this a problem?

i. The examples that have such ridiculous complexity are abhorrent
(pathological examples)
ii. In practice, time analysis will be polynomial (for real life programs)
iii. So exponential complexity is not a deal-breaker.
I. It's proven that if there is a type for an expression the analysis will find it.
Il Syntactic Sugar / Sugarings

a. Nice to have, but don't really add anything new to the language.
b. Define these in terms of other expression types.
c. letf=(funx->e) letfx=e
d. letrecf=(funx _.e) letrecfx=e
e. Example
i. letrecfact=(funx->ifx=0then 1lelse x *f act(x
-1)
ii. letrecfactx=ifx=0then 1 else x * fact(x — 1)

f. Certainly more convenient to write stuff the shorter way.
Also don’t have to define any new behavior. You can have a very limited language
that’s still easy to use by adding syntactic sugar.
V. Commenting Conventions
a. (*Comemnt™)
b. These go right before definitions
c. NB: These conventions will be enforced on homework assignment.



d. For Our class:

(* <functionName> : 1

In: <formal parameters, expected invariants>
Out: <description of semantics>

*

)

(* fact : int -> int

In:x=0

Out: x!

*)

let rec fact...

Composite Types
Data structures built of the composition of basic types
b. Products/ Tuples

a.

C.

Vi.

Vii.

viii.

Type Form
1. iy*...*1,forn>1
2. *like Cartesian product
Value Form: (vy, ..., v,) forn>1
Values
1. Infinite set
2. Examples
a. (1,2):int*int [homogeneous]
b. (“hi", 2.0) : string * float [heterogeneous]
c. ((funx->x+1),0): (int->int) *int
d. (1,0,"a”) :int*int* string
e. ((1,0), 1.0) : (int * int) * float
3. NB:(T1*To)*T3 2T1 ¥ Tp * T3
Binding Strengths
1. So far we have * and -> as type constructors
2. *binds more strongly than arrow
3. int*int->int = (int * int) -> int
Operations
1. Construction
a. Formation
b. (4 ...,e n): T*..* T1,iffeg:yforalll<isn
2. Deconstruction
a. Projection
b. fst(e): T4, snd(e) : T iffe: T T
c. Note that these are valid for pairs only!
Evaluation
1. Construction: (€ 1, ...,€ ) Y (v q,...,v p)iffforalll
i <ne ; v, inright-to-left order

2. Deconstruction: fst(e) J v, snd(e) v 2iffe: T *
Example

1. (1 +2,sqrt(4)) :int*float 4 (3, 2.0

2. fst(1 + 2, sqrt(4)) : int 43
Example

1. We can now, in effect create functions with multiple arguments.
2. let add pair x = fst(x) + snd(x);;
3. addpair(3, 5) 48

More composite types later.

IN

T2






ERROR: undefinedfilename
OFFENDING COMMAND</FONT>

STACK:



