

Notes – Functions

- I. Function Types
 - a. In procedural programming, there's a distinction between functions and data.
 - b. The basic view in functional programming is that functions are data.
 - c. Functions can be passed as arguments from functions or returned as results.
 - d. Form of Function Types
 - i. τ₁ -> τ₂
 - ii. τ_1 is the "domain type"
 - iii. τ_2 is the "range type"
 - iv. abs : int -> int
 - v. sqrt : float -> float
 - e. Values (1)
 - i. Primitives (functional constants)
 - ii. e.g. abs, sqrt
 - iii. Provided with the language implementation
 - iv. Types are pre-assigned
 - v. We will let c range over primitives.
 - f. Operations
 - i. Application using the function
 - 1. e_1e_2 : τ iff e_1 : τ ' -> τ and e_2 : τ
 - 2. For primitives, evaluation of application is pre-defined
 - ii. No other operations necessary
 - g. Values (2)
 - i. "lambda" functions or functional abstractions
 - ii. Form: fun x : $\tau \rightarrow e$
 - iii. Take note that these are anonymous functions.
 - iv. Type Checking
 - 1. When we assert that the argument has a certain type, the type checker will assert that we've used it that way.
 - 2. Extend the type environment with $x : \tau$
 - 3. Type-check e in the extended environment
 - 4. Yield $e : \tau'$ if successful
 - 5. Retract e : τ from environment, yield that the entire function has type $\tau \rightarrow \tau'$
 - v. Definition: The scope of x in (fun x : τ -> e) is e
 - h. Evaluation
 - i. Since functions are treated as values and values evaluate as themselves, any function (fun x : τ -> e) \Downarrow (fun x : τ -> e)
 - any function (fun $x : \tau \rightarrow e$) \forall (fun $x : \tau \rightarrow e$)
 - ii. This is rather counterintuitive. Why? Consider an example:
 - iii. (fun x : int -> 1 + 2) \Downarrow (fun x : int -> 1 + 2) not 3!
 - iv. Lambda abstraction freezes computation.
 - v. The function is "not ready" for a value yet. It's still abstract since it still needs a value.
 - i. Application Evaluation
 - i. $e_1e_2 \Downarrow v$ iff $e_1 \Downarrow (fun x : \tau \rightarrow e)$ and $e_2 \Downarrow v$ and $e \Downarrow v$ after temporarily extending the environment with x = v'
 - ii. After evaluation of e_1e_2 , remove x = v from the environment.
 - j. Definition: In e_1e_2 we call e_2 the argument of e_1
 - k. Examples of Scope
 - i. let x : int = 5 in (fun y : int -> x + y)3 \Downarrow 8
 - ii. (fun x : int -> let y = 5 in x + y)3 \Downarrow 8
 - iii. let x : int = 1 in (fun x : int -> 2 * x) $\Downarrow 0$
 - I. Example

- i. (fun (f : int -> int) -> f0)
- ii. Takes another function, applies it to 0.
- iii. (fun (f : int -> int) -> f0)(fun x : int -> x + 1) : int \Downarrow 1
- iv. Type (int -> int) -> int
- V. (fun (f : int -> int) -> f)(fun (x : int) -> x + 1)3 $\Downarrow 4$
- II. Function Declarations
 - a. Normal
 - i. let double : int -> int = (fun x : int -> 2 * x);
 - ii. double (x) \Downarrow 4
 - iii. We're just binding a variable to the function "value" since functions are data!
 - iv. Remember that the function does not have access to its own name (see notes about variable declaration) so we can't do recursion yet.
 - b. Recursive Declarations
 - i. Introduction
 - 1. A function that calls itself.
 - 2. Without the rec keyword, the scope of let declarations does not extend to the statement itself
 - 3. Base Case (basis): Case in which the argument causes immediate termination (no recursive call)
 - 4. Recursive Case: A case in which the argument causes a recursive call.
 - 5. Well-foundedness: A well-defined recursive function must have a basis.
 - 6. The real power in a function language is in recursion (as opposed to a procedural language, where the power comes from iteration).
 - ii. Form: let rec x : $\tau = e$
 - iii. NB: Scope of x extends to e
 - iv. let rec expt : int -> int = (fun (x : int) -> if x = 0 then 1 else 2 * expt(x 1))
 - V. let rec fact : int -> int = (fun (x : int) -> if x = 0 then 1 else x * fact(x 1))
 - vi. Without the rec keyword, the scope of let declarations does not extend to the statement following them.
- III. Function Application
 - a. Call by Value
 - i. $e_1e_2 \Downarrow v$ iff $e_1 \Downarrow (fun (x : \tau) \rightarrow e)$ and $e_2 \Downarrow v$ and $e \Downarrow v$ in an environment extended with x = v'
 - ii. Call by Value because e_2 is evaluated first.
 - iii. Nothing requires this we could just use e_2 itself in place of x
 - iv. Called "eager strategy", "strict strategy"
 - v. This is what OCaml uses.
 - b. Call by Name
 - i. $e_1e_2 \Downarrow v$ iff $e_1 \Downarrow (fun (x : \tau) \rightarrow e)$ and $e \Downarrow v$ in an environment extended with $x = e_2$
 - ii. Called "lazy strategy"
 - iii. Note that e_2 now needs to be evaluated everywhere x is used. If e_2 is complicated, that could cause an efficiency problem.
 - c. Call by Need
 - i. Essentially the same as "call by name" except that e₂ is evaluated the first time x is encountered, then the result is saved to be used for all future occurrences.
 - ii. This eliminates the (potentially huge) efficiency drop in call by name.
 - d. Example

- i. e (fun (x : int) -> 1) e'
- means "is defined equal to" ii.
- iii. Assume e' does not terminate
- iv. Eage: Won't terminate since it will begin by trying to evaluate e'. Diverges.
- v. e ↑ (diverges)
- vi. Lazy Strategy: e ↓ 1
- IV. **Recursive Functions**
 - a. One of our main course topics is reasoning about programs.
 - b. Functional programming is great for this, and functional programming gets its strength from recursion.
 - c. Overview
 - i. Base Case: No recursive calls
 - ii. Recursive Calls: Results in recursive call
 - d. Factorial Example
 - i. let rec fact = (fun (x : int) \rightarrow if x = 0 then 1 else x * fact(x - 1))
 - ii. Base Case: 0
 - iii. Recursive Case: n > 0
 - e. Definition: A function is total with regard to (wrt) a domain S iff $f(x) \downarrow v$ for all $x \in S$.
 - f. fact is total wrt {0, 1, 2, ...} or ℕ
 - g. fact is not total wrt Z
 - Mathematical Induction

V.

- a. Really closely related to recursion. In some sense, they're the same thing.
- Suppose we want to prove that pa property P holds for ℕ b
- Use proof by Mathematical Induction C.
 - i. Prove base case: Prove that P holds for zero (prove that P(0) holds)
 - ii. Make an induction <u>hypothesis</u>: P(j) holds for all 0 < j < n
 - iii. Prove the induction step: Given the induction hypothesis (IH), prove P(n)
- d. Factorial Example
 - i. let rec fact = (fun (x : int) -> if x = 0 then 1 else x * fact(x 1))
 - ii. Proposition: That for all $n \in \mathbb{N}$ fact(n) = "n!".
 - iii. Proof (by Mathematical Induction)
 - 1. Base Case
 - a. Prove that fact(0) \Downarrow "0!" \Downarrow 1
 - b. This is obvious by the function's definition.
 - 2. Induction Hypothesis: fact(j) \Downarrow "j!" for $0 \le j < n$
 - 3. Prove fact(n) \Downarrow "n!"
 - a. By definition of fact, fact(n) = n * fact(n 1)
 - b. fact $(n-1) \Downarrow (n-1)!$ by the IH
 - c. So fact(n) = n * "(n 1)!" by the definition of \Downarrow .
 - d. Hence, fact(n) \Downarrow "n!"
- e. Example
 - i. let rec expt = (fun (x : int) -> if x = 0 then 1 else 2 * expt(x 1))
 - ii. Proposition: For all $n \in \mathbb{N}$ expt(n) \Downarrow "2""
 - iii. Base Case
 - 1. Prove expt(0) \Downarrow 1
 - 2. This is obvious by the definition of the function
 - 3. IH: Assume expt(j) \Downarrow "2^j" for $0 \le j < n$
 - iv. Induction Step: Prove expt(n) \Downarrow "2ⁿ"

 - v. By definition, $expt(n) = 2^* expt(n 1)$ vi. By IH, $expt(n 1) \Downarrow "2^{n-1}$ ", hence $exp(n) = 2^* "2^{n-1}$ "
 - vii. By definition of \Downarrow we have 2 * "2ⁿ⁻¹" = "2 * 2ⁿ⁻¹" = "2"
- The moral: When programming recursively, think inductively. f.
 - i. Don't try to visualize the entire call tree.

ii. Imagine that all previous recursive calls have worked perfectly and decide what needs to be done in *this* call to make the result come out properly.

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK: