
Benjamin Fenster
 CS-103 (Skalka)
 13 September 2003

Notes – Complex OCaml Expressions

I. Conditionals and Relationals

a. Relational Operations
i. These use other types, yield bool
ii. Operations

1. e1 = e2 : bool
2. e1 <> e2 : bool
3. e1 > e2 : bool
4. e1 >= e2 : bool
5. e1 < e2 : bool
6. e1 <= e2 : bool

iii. Note that the = operator is not assignment – it’s equality!
iv. All are overloaded for int, float, string, char, and unit, except that the type of

the two operands must agree.
v. Examples

1. 1 = 2 : bool
2. 1 = 2 � false
3. 1 = true (nonsensical)

vi. Evaluation
1. Interpretation is obvious for numbers
2. For char and string types, uses dictionary ordering based on ASCII

values.
3. Examples

a. “aa” < “ab” � true
b. “aaa” < “ab” � true
c. “aa” < “aaa” � true
d. “aa” < “aba” � true

b. Conditionals
i. If… Then (conditional branching)
ii. if e then e1 else e2 : τ iff e : bool and e1 : τ and e2 : τ
iii. Examples

1. if 1 = 0 then 5 else 3 : int
2. if 1 = 0 then 5 else true (nonsensical)

iv. Note that the last example would always be valid since it would always yield
“true” (there’s no chance 5 would result)

v. We guarantee well-typed expressions are safe, but expressions that aren’t
well typed may or may not be okay.

vi. We end up throwing away some good expressions in exchange for a better
guarantee

vii. This is an important point that we’ll discuss later.
II. Declarations of Variables

a. Declarations
i. Values and types are associated with names via declarations, which bind

values and types to names in environments.
ii. It’s not a box, it’s a name for a value.
iii. Variable names

1. Sequences of letters, numbers, and _ characters. They must begin
with a lowercase letter or an underscore.

2. We will let x range over variable names.
iv. Environments

1. Also, “value environment”

2. A lookup table that associates a collection of variable names with
values.

3. Each entry is a binding: x = v.
4. Once you define a name in a dictionary its definition sticks.

v. Type Environment
1. Like the value environment, but entries are type bindings.
2. x = τ

b. Value Binding
i. Form of declarations: let x : τ = e
ii. Example

1. let two : int = 1 + 1;;
2. two + 5 � 7

iii. Bindings are always type checked
1. let x : τ =e
2. Type check e, say e : τ’
3. Make sure τ’ = τ
4. Add x : τ to the top-level environment.

iv. Evaluation
1. First evaluate e � v
2. Then add x = v to the top-level environment.
3. Note: e is evaluated before adding it to the environment.
4. That means the variable you’re naming isn’t in scope when you’re

declaring it.
v. Example

1. let x : int = 1;;
2. let y : int = 2;;
3. x + y;; (x + y � 3)
4. x = 3;; (x = 3 � false)
5. Note that x = 3 is NOT an assignment.

vi. Variables don’t vary!
c. Shadowing

i. The most recent declaration of a variable overrides (shadows) all previous
bindings

ii. Example
1. let x : int = 5;;
2. let x : int = 7;;
3. x = 5 � false

iii. There’s no reason you can’t re-declare the same variable with a different
type. The new variable still shadows the earlier declaration

d. Scope
i. Localization of declarations is possible
ii. Done with let expressions
iii. let x : τ = e1 in e2
iv. Localizes the definition of x to just e2
v. Example

1. let x : int = 5;;
2. let x : int = 1 in 2 * x � 2
3. x = 5 � true

vi. Type checking
1. First type check let x : τ = e1 the same way as before
2. Then temporarily extend the type environment with x : τ
3. Now type check e2 in the extended environment, yield e2: τ’
4. Retract x : τ binding from the type environment, yield τ’ as the type of

the whole expression.

vii. Evaluation
1. First evaluate e1 to v (e1 � v)
2. Temporarily extend the environment with x = v
3. Then evaluate e2 in the extended environment, yield v’
4. Retract the binding x = v from the environment
5. Yield v’ as the value of the whole expression.

viii. Definition: The scope of x in let x : τ = e1 in e2 is e2
ix. Environments have stack-like behavior
x. Example – let x : int = 2 in (let x : int = x + x in 2 *

x) + x � 10

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK:

