

Notes – Introduction

- I. Introduction
 - a. Course Materials
 - i. Smith & Grant online. Nothing to buy
 - ii. Language: OCaml
 - iii. Emacs, or any text editor
 - iv. Homework submitted using Submit.
 - b. Coursework
 - i. Regular readings as a recommended lecture supplement
 - ii. Homework
 - 1. Weekly
 - 2. 50% of final grade
 - iii. Late policy: 10 points per day, up to 7 days
 - iv. Tests
 - 1. Other 50% of grade
 - 2. Midterm (20%)
 - 3. Final (30%)
 - v. Cheating: Conceptual collaboration okay, just don't copy anything.
 - c. Suggestions
 - i. The course is very systematic: concrete steps
 - ii. Don't miss anything.
 - iii. Tests are open-notes, so take good notes.
 - iv. Don't think of OCaml the same way as C++ or Java
- II. Overview
 - a. Central Concepts
 - i. Computability
 - 1. How to precisely characterize computing power
 - 2. Necessary features of programming languages to realize that power.
 - ii. Syntax (form), Semantics (meaning)
 - iii. Static Analysis (types)
 - 1. "Things you can tell by looking at code"
 - 2. Can get certain information about the program just by looking at the code statically.
 - iv. Reasoning about programs
 - b. Organization
 - i. First half: OCaml language
 - ii. Second half: Using OCamI to implement an interpreter for a small language
- III. Computability
 - a. "Computers" (electronic) are just one instance of the broader concept of "computing device."
 - b. Functions
 - Definition: A function, set theoretically, is defined as a set of ordered pairs (x, y) such that if there exists (a, b) in f and (a, b') in f, then b = b'.
 - ii. Example: Doubling Function = $\{(1, 2), (2, 3), \dots\}$
 - iii. Definition: Given a function f, the domain of f, written dom(f) is $\{x \mid (x, y) \in f\}$. The range of f, written rng(f) is $\{y \mid (x, y) \in f\}$.
 - iv. Doesn't necessarily state that f(x) is computable!
 - c. Computability
 - i. Common notion: A procedure is computable on a given input iff it can be described in a finite manner as a set of definite actions and provides an output in a finite amount of time.
 - ii. Any formal definition devised so far conforms to this common notion.
 - iii. Note the time constraint. It needs only be finite. Efficiency is not addressed. Thus, an algorithm that takes billions of years is still considered computable.

- d. Turing Machines
 - i. Developed in 1930s by Alan Turing
 - ii. Idealized computing device, doesn't exist.
 - iii. A TM is comprised of...
 - 1. An indefinitely long tape (NOT infinite, just indefinitely long) divided into squares containing either 1 or 0.
 - 2. A read/write shift head (moves left and right) that can see one square at a time.
 - 3. An input card hopper capable of reading instructions from cards.
 - 4. A small region of internal memory containing an internal state ID (arbitrarily large integer)
 - iv. State IDs
 - 1. s1, s2, s3, ...
 - 2. At any given moment, a Turing machine will be in a particular configuration
 - 3. Its configuration consists of the value currently under the reading head, together with the current state ID.
 - 4. Start configuration is $(s1, n_s)$ where n_s is the value under the reading head, given the initial tape.
 - v. Programming
 - 1. Input cards of the form $\langle S_i, n, a, S_f \rangle$ (a quadruple)
 - a. S_i specifies the initial state.
 - b. n specifies the current read/write value
 - c. a specifies the definite action
 - i. Write 1
 - ii. Write 0
 - iii. Shift left
 - iv. Shift right
 - v. Halt
 - d. S_f specifies the result state.
 - 2. Cards are ordered, but are NOT "if..then" instructions in the traditional sense. Whichever card represents the current configuration gets executed.
 - 3. The reason the cards must be ordered is that two cards may contain the same S_i and n, in which case the first card is executed.
 - 4. Clearly very difficult for humans to program.
 - 5. "Computable" means that if the tape is initialized with x, then there exists a stack of cards such that the machine will halt with f(x) on the tape.
 - vi. Non-Termination
 - 1. Consider the card <s1, 0, Write 0, s1>
 - 2. Assuming the tape starts with 0, the program never ends.
 - 3. Much more than just an annoyance to the programmer.
 - 4. Any Turing-Complete language will have this "feature."
 - 5. Fact (Halting Problem): There is no computable procedure for deciding whether an arbitrary TM will halt on a given input.
- IV. Programming Languages for Electronic Computers
 - a. Instruction set: Basic, primitive operations.
 - b. Machine Level languages specify procedures in terms of instruction sets.
 - c. Like card stacks for Turing Machines, very difficult and error prone for humans to use.
 - d. High Level Languages (HLLs) specify procedures at a much more abstract level: a level that's easy for humans to understand.
 - e. Even when using HLLs, we don't change the instruction set of the computer.
 - i. Need a translator of some kind.
 - ii. Compiled Languages

- 1. Most efficient implementation
- 2. Compilers are extremely complex.
 - a. Take HLL and translate into machine level.
 - b. Very complicated.
 - c. Most complex software in existence in terms of the amount of theory involved.
- 3. Interpreted Language
 - a. An interpreter of the language written in another HLL
 - b. Correctly implements constructs in terms of the other HLL
 - c. For example, an interpreter in C++ would determine the meaning of a statement and then execute it by running some C++ code.
- 4. NB: Any Turing-Complete language can interpret itself (called meta circularity)

ERROR: undefinedfilename
OFFENDING COMMAND:

STACK: