
Benjamin Fenster
 CS-100 (Damon)
 3 May 2003

Notes – Operator Overloading

I. Function Overloading
a. Can have similar functions with the same name, but different arguments.
b. The compiler picks one at compile time based on the declared types of arguments.
c. Everything else we’ve seen is based on runtime types, but this is not.

II. Operator Overloading
a. Arithmetic operators are almost always overloaded for ints, floats, etc.
b. Java also overloads + for strings, and |, ||, &, and && for int and Boolean.
c. All this seems pretty natural.
d. Languages like C++ allow programmers to define operators too.

i. Makes the programmer’s code look just like built-in code.
ii. In C++ can define a global function that takes one or two arguments

(depending on the nature of the operator).
iii. Can also define a member function on a class, with one fewer argument (the

first will always be an instance of the class.
e. Finding the right function or method to interpret a unary operator is pretty easy.
f. How does C++ find the right function to interpret a binary operator?

i. Look at the left-hand operand
1. Try to resolve as an operator member function.
2. If it’s not an object skip this, and move on. If there is no function,

move on.
ii. Look for an appropriate global function.

g. There’s no assumption that any operator is commutative
i. Need every possible permutation to make the code easy to write.
ii. Makes for a LOT of code!

h. C++ allows almost every operator to be overloaded
i. We discussed new and delete already.
ii. Can define globally or in a class.
iii. Define both or none – don’t define one and assume the default

implementation of the other will suffice.
i. The tricky ones are those using reference types. (Remember that reference types

are just pointers that get dereferenced automatically).
III. Specific Operators

a. ++, --
i. One for pre, one for post.
ii. operator++(int) is post
iii. operator++() is pre
iv. The post-fix version doesn’t actually use its integer argument – it’s just there

to indicate which function is which.
b. Subscripting, operator[]

i. Makes list access look like array access
ii. For getting, return a reference to where the data is stored (dangerous!)
iii. For setting, you still have to return such a reference so you may need to

create some space first and return a reference to that.
c. Can overload function calls

i. Make an object and “call it”
ii. Weird

d. Surprising: The -> dereference operator, along with *
i. Allows “smart pointers”
ii. Means you can make a “pointer” that doesn’t really refer to memory.
iii. May really access stuff off a disk or something else, but will look and act like

a pointer.
iv. Almost allows persistent objects, save a few quirks.

e. Casting

i. Casting to a built-in type is simple.
ii. Casting to another object is quite different.
iii. Converts cast to constructor calls.
iv. C++ tries to cast wherever it’s appropriate (3 to double, for example, in

double x = 3;)
v. Makes nice code in terms of simplicity.
vi. Makes it even harder to find the code that’s executing.
vii. More time is spent reading code than writing it.

IV. The Rub
a. There are many cases where this is great, but others where it’s horrible.
b. Three problems.
c. Need to get all the operators right. That’s not too bad.
d. Need to get every permutation right.

i. This is really hard.
ii. Adding a new class that can interact with an existing class means you need

to add tons of overloaded operator functions just to get the two to work
together.

e. Readability
i. It’s hard for the compiler to find the right function to use.
ii. It’s even harder for a human to find it.
iii. It’s extremely hard to understand code using overloaded operators when you

need to know where the supporting code is.
iv. You can’t even guarantee that the operator does what’s expected.
v. The cout << value; command looks pretty, but has nothing to do with

left shift!
vi. Someone thought that was a good idea, so someone else may similarly

create something weird.
f. Use it Sparingly

i. x + y isn’t that much better than x.plus(y);
ii. Keep in mind the future maintenance you’ll have to do.

g. Sometimes overloading operators is cheaper than allowing the automatic conversion
when you write Fraction f2 = f1 * 3.

i. Would first convert 3 to a Fraction
ii. That’s expensive. VERY expensive (takes twice the time)
iii. Better in that case to overload + and get an efficiency boost.

h. Performance
i. On that note…
ii. It takes about a 10% change in performance for anybody to notice.
iii. It’s a question of choosing the right algorithms.
iv. Too many people focus on the speed of low-level code, but that rarely

matters.
v. The design matters. If it’s a good design, you can focus on the performance

issues that need attention later rather than focusing on all potential problems
as you write code.

vi. Take CS209 next Spring for more information on performance.

