
Benjamin Fenster
 CS-100 (Damon)
 1 February 2003

Notes – Exceptions

I. Function Requirements
a. Partial functions don’t accept all possible inputs – only a subset.
b. Behavior is undefined if other values are sent.

i. Could crash
ii. Could enter an infinite loop.
iii. Worst, perhaps, a result that appears valid could be returned.

c. What to do if an input doesn’t make sense?
i. Return a special value (null, -1, etc)

1. Not always possible. Maybe all possible values are legal.
2. Caller needs to remember to check.

ii. Modify an extra argument.
1. Harder to call the function now.
2. Caller still has to remember to check.

iii. Throw an exception.
II. Exceptions

a. The third option!
b. The caller cannot forget to check!
c. The function ‘throws’ an exception, which must be caught or thrown again by the

caller.
d. The object thrown is an instance of Exception or a subtype.

i. Anyone can derive a new subtype
ii. Can define extra fields and methods that give additional information about

the error.
iii. Some such methods are already defined.
iv. printStackTrace()

1. Shows the current state of the runtime stack.
2. An easy way to get runtime information.

e. If an exception is not caught, it propagates up until it finds a function that can catch it.
III. Exception Handling

a. What should you do when you catch an exception?
b. Four basic strategies.
c. Fix the problem.
d. Report an error and exit.
e. Return from the function.
f. Throw another exception.

i. Maybe the same one.
ii. Maybe a new one.
iii. “Reflecting” the exception.

IV. Style
a. If you might throw an exception, include a throws clause in the function header.
b. MUST list all exceptions potentially thrown.

i. Not listing one triggers a compiler error.
ii. Could just say throws Exception but that doesn’t help the programmer

trying to use the function.
iii. The exception to the rule is RuntimeException and its subclasses

1. These are meant for “weird” errors for which you wouldn’t likely be
planning.

2. Dereferencing null
3. Dividing by zero
4. Out of Memory
5. About 50 classes, including NullPointerException

c. The code becomes a little harder to understand both for the compiler and the
programmer, since the flow of control breaks up a little more.

d. The code no longer executes in a user- or programmer-controlled sequence.
e. Sometimes you need to guarantee a set of statements will execute.

i. Close the file you’re using, release the lock on something, etc.
ii. Use a finally block.
iii. If an exception is thrown, finally executes and then it propagates.
iv. finally is good even when no exceptions are involved because it runs

even before returning from the function (if the return is done from inside a
try.

v. If you do catch the exception, catch will execute first, then run finally,
then reflect the exception (if that’s what your catch requested).

vi. Essentially, one cannot leave the try block until the finally clause executes.
f. Use @exception in Javadoc.

i. Should include one for everything that’s in your throws clause.
ii. Indicate the circumstances where it’s thrown.
iii. Indicate any likely runtime exceptions
iv. If you listed a super-class, indicate which subclasses will actually be thrown.

V. Debugging Exceptions
a. BlueJ isn’t very helpful at this.
b. If an un-handled runtime exception occurs, the debugger stops at the throw.
c. If it’s handled somewhere, there’s no easy/direct way to find the source.
d. If you created the subclass, put a breakpoint in its constructor.
e. jdb has a catch ExceptionName command to automatically stop at any applicable

throw. Use catch Exception to stop for everything!

