

Forecasting

- I. Learning and Experience Curves
 - a. Concept
 - i. A company or person gets more efficient as he/she/it gains experience with a task or product
 - ii. Experience curves = At the company / industry level, measuring dollars instead of hours spent on a task
 - iii. $Y(u) = au^{-b} =$ number of hours it takes to produce the uth unit
 - 1. a = number of hours to produce the first unit
 - 2. b = learning coefficient / learning rate
 - iv. That's the most common representation but not the only form of learning curve
 - v. Can also express in terms of cumulative time or average time to produce a unit
 - b. Types of Learning
 - i. Individual: People continue doing a job repeatedly; they gain efficiency
 - ii. Organizational: Management changes, better materials, et cetera
 - c. Learning Percentage
 - i. For a 90% learning curve, what does that mean?
 - ii. The time it takes to produce the second unit is 90% of the time it took to produce the first unit.
 - iii. Unit 200 takes 90% as long as unit 100
 - iv. $Y(2u) / Y(u) = a(2u)^{-b} / au^{-b} = 2^{-b} = -90\%$
 - v. Learning coefficient thus corresponds to the percentage
 - vi. $b = -\log_2(0.9) = -\ln(0.9) / \ln(2)$ so b = 0.152
 - d. Estimating the Learning Curve
 - i. Sometimes can lookup a "known" curve for a particular job
 - ii. Can also establish from your own performance data fit a curve to the data
 - iii. Linear Relationship: ln(Y(u)) = ln(a) b ln(u)
 - iv. Or do simple regression analysis
 - e. Using Learning Curves
 - i. The firm that grabs the largest market share early in the lifespan of a new generation of product will have the lowest cost (even if it's on the same percentage learning curve)
 - ii. Being on a lower percentage experience curve gives an advantage even at the same volume
 - iii. A firm with more experience can offer lower prices to get a bigger advantage
 - iv. Aggressive operations improvement: cost reductions due to experience
 - v. You initially want more flexibility (like a job shop). As volumes increase, move up the diagonal on the product-process matrix (up to line flow if you get high enough volumes)
 - vi. If you focus too much on the learning curve you may miss a chance to switch to a new product warranted by a radial shift in consumer tastes

II. Forecasting

- a. Introduction
 - i. Forecasting by and large is done for strategic, financial, marketing, sales, ...
 - ii. Needed in order to undertake any business planning activity
 - iii. Different techniques work well for different types of forecasting
 - iv. Short-range forecasts are needed to plan operations; tend to be worthless everywhere else in the firm
 - v. Want objective techniques (regression-based or time series forecasts); those are good within Operations
- b. Gauging Accuracy
 - i. Say you're considering two methods of forecasting
 - 1. Method 1 is off by +/- 100 in alternate years
 - 2. Method 2 is off by +50 / -150.

- ii. Forecast Error is Actual Demand Forecast
- iii. Mean Forecast Error: Method 1 looks better. Mean1 = 0, Mean2 = -50
- iv. Example
 - 1. Method 1 is +/- 100, Method 2 is +/- 50
 - 2. MFE = 0 for both, yet Method 2 obviously looks better
- v. Average Error Size (MAD Mean Average Deviation)
 - 1. For Method 1 = 100
 - 2. For Method 2 = 50
- vi. Mean Squared Error: Now a large number (a large error) is made much worse than a smaller error
- vii. There are obviously tradeoffs between methods
- c. Time Series Forecasting
 - i. Only historical data are considered; no other factors
 - ii. There's always some randomness in actual demand. D = μ + ϵ_t
 - iii. Demand = Pattern(Mean) + Randomness
 - iv. We don't want to even try forecasting actual demand; we just want to forecast the pattern
- d. Moving Averages
 - i. Time series technique that works well when you're not worried about trend or seasonality
 - ii. Average (mean) previous periods (say 3 months worth) and call that he forecast for all future periods
 - iii. Selecting the number of periods
 - 1. Tradeoff stability and responsiveness
 - 2. Can't have both
 - 3. More periods = more stable
 - 4. Fewer periods = more responsive
 - 5. If you expect gradual changes, allow more responsiveness.
 - 6. If you expect lots of randomness, shoot for more stability.
 - iv. Good when demand is stable over time
- e. Exponential Smoothing
 - i. This is really a whole class of smoothing methods
 - ii. We'll consider "simple" or "regular" smoothing
 - iii. Forecast based on the previous forecast and on demand
 - iv. $F_t = \alpha D_{t-1} + (1 \alpha)F_{t-1}$
 - v. $F_{t+k} = F_t$ for k > 0
 - vi. Here α is the smoothing constant: the weight of each component
 - vii. $F_t = F_{t-1} + \alpha(D_{t-1} F_{t-1})$ where $D_{t-1} F_{t-1}$ is the forecast error
 - viii. You're changing your forecast by some fraction of the previous error
 - ix. A third way to think about it:
 - 1. $F_t = \alpha D_{t-1} + \alpha (1-\alpha)^1 D_{t-2} + \alpha (1-\alpha)^2 D_{t-3} + \dots$
 - 2. $F_t = SUM(n=1, \infty, \alpha(1-\alpha)^{n-1}D_{t-n})$
 - x. Just a weighted average of past demand, where weights just come from a formula
 - xi. By choosing α correctly you can effectively weight, say, the first three periods as X% of the forecast
 - xii. It's not quite a moving average but it's an average of past demand
 - xiii. Choosing α : The Parameter
 - 1. Same stability vs. responsiveness decision again
 - 2. Small α means more stability (less weight on recent demand)
 - 3. Big α is more responsive
 - 4. There are software methods of picking α that gives the smallest MSE (or some other error)
 - xiv. To get the "first" forecast, you need a forecast for the previous period. Using moving averages or something else to get that.

- f. Can calculate the α and N that will give equivalent results
 - i. $\alpha = 2 / (N + 1)$
 - ii. N = $(2 \alpha) / \alpha$
 - iii. If you try both methods, they should perform equally well in the long run.
 - iv. That doesn't mean they'll work the same in the short run
- g. Trend Analysis
 - i. The way you'd naturally do it in Excel
 - ii. Good when you don't need to recomputed too often. Intense computations
 - iii. Keep in mind:
 - 1. More sophistication is not necessarily better
 - 2. How much accuracy do we need?
 - iv. Hult's method is an alternative to regression for trend analysis.
- III. Seasonality
 - a. Want to reflect that demand swings in a sinusoidal way over seasons
 - b. Probably more important than trend
 - c. Could use sin/cos to estimate a curve
 - d. Could generate seasonal factors (multiplicative vs. additive)
 - e. Multiplicative
 - i. Calculate the average of all periods
 - ii. Then take each season's average / overall average
 - iii. Tends to be long-run phenomenon: May not notice a trend in day-to-day data but might notice in longer time spans
 - iv. May additionally have a trend within the seasonal data
 - v. Compute demand / average to a ratio: how far above/below the average is each period?
 - vi. Compute seasonal factors = straight average of ratios across all similar periods
 - vii. Trend
 - 1. Average change in percentage in average yearly demand
 - 2. Use that as the increase to the forecast year T (from the (T 1) average
 - 3. Then apply seasonal factors to get each period's forecast
 - viii. Regression
 - 1. First deseasonalize demand
 - 2. Then do regression on all *those* data
 - 3. Then you've got only the trend data
 - f. Imagine a perfect trend data: 10, 11, 12, 13, 14
 - i. The 5-period average will match where demand was right in the middle
 - ii. With an even number of periods, the average belongs in between the middle *two* periods
 - iii. Then take the two adjacent averages, average *them*, and that number belongs right in the middle