Pricing

I. Many Approaches
a. Won't even cover microeconomic approaches
i. Perfect Competition (good for agriculture), price is already set
ii. Monopoly: Set price based on MC curve
b. Will take a more practical approach (less theoretical)
c. How much of "value added" do we want to give away, and how much to retain?
d. Price = Rent, Tuition, Fee, Interest Charge, "Naming Gift Opportunities," et cetera
e. Depending on goals, may set price differently (maximize revenue, market share, ...)
II. Common Mistakes
a. Too cost-oriented ("cost obsessed") - cost is something different
b. Not revised frequently to exploit market changes
i. New products, macroeconomic shocks, et cetera - all affect demand
ii. Can (should) alter prices in response to those changes
c. Set independent of the rest of the marketing mix. Should be an intrinsic part of positioning strategy.
III. Flawed Approaches
a. Markup Pricing
i. Have desired markup over cost; just set the price!
ii. Example

1. $\mathrm{VC}=\$ 10, \mathrm{FC}=\$ 300,000$
2. Forecasted Sales: 50,000 units (but shouldn't the forecast include price?)
3. Unit Cost: $300,000 / 50,000+\$ 10=\$ 16$
4. Want 20% markup, so from $\$ 16$ get $\$ 20$
5. Done! But wait; if we only sell 30,000 we make no profit.
6. To get 20% we'd have to raise the price, but demand seems soft already.
7. If sales are at 70,000 we'd have to lower the price! Also counterintuitive
b. ROI Pricing
i. Another cost-based approach
ii. Same Example
8. Invested $\$ 1,000,000$. Want 20% ROI.
9. $200,000=(50,000) \mathrm{p}-(50,000)(\$ 16)$
10. Again based on forecasted demand
c. Could get a ballpark sense of where the price should be by estimating a range of demand levels, but doesn't remove the fundamental conceptual flaw with cost-based pricing.
IV. Reduction Planning
a. Initially everything is "full price"
b. As the season progresses, markdown based on observed demand
c. Discounts - to Boy Scouts or whatever
d. Stock Reductions - a.k.a. theft (about 50% of after tax net profits at department stores)
e. Markup on Retail $=(\mathrm{R}-\mathrm{C}) / \mathrm{R}=($ Operating Expenses + Profit $) /$ Net Sales
f. So plan markup based on desired profit
i. Calculate markup, then raise it by amount of reductions
ii. (Operating Expenses + Profit + Reductions) / (Net Sales + Reductions)
V. Marketing Approach
a. How can marketing give a better pricing answer?
b. Thoughts / Goals
i. Recognize different segments, different elasticity
ii. Design pricing to discriminate across segments
c. Tactics
i. Segment by Buyer Identification
11. When we give student ID to get a discount, we're identified as price sensitive (if you're not price sensitive you don't flash the ID)
12. Other customers identified by process of elimination
13. Car salesman asks questions to identify segments: "What do you do for a living? How long have you lived in the area?" (If you haven't lived in the area you may not know as much about the competition) "What cars have you purchased before?"
ii. Segment by Purchase Location. Set lower prices where there's competition.
iii. Segment by the Time of Purchase
14. Resorts with peak / off-peak season
15. Movie theatres with matinees
16. Many restaurants have dinner and lunch pricing
iv. Segment by Purchase Quantity
17. By volume: Big buyers are price sensitive
18. Two-Part Pricing
a. Amusement park charges $\$ 20$ to get in, $\$ 1$ per ride.
b. Health club charges for membership plus an hourly rate
c. Heavy users pay less per unit than lighter users
19. Bundling - See the whole section on bundling below
VI. Bundling
a. Example
i. Have two theater owners
20. A wants Film 1 for $12 k$, B wants Film 1 for 18 k
21. A wants Film 2 for 25 k , B wants Film 2 for 10 k
ii. With perfect price discrimination could get 37 k from A and 28 k from B. Total: 65 k
iii. Would never work - communication across buyers makes this impossible
iv. Pure Component Pricing
22. Charge $\$ 12 \mathrm{k}$ for Film 1 since both theaters buy it.
23. Charge $\$ 25 \mathrm{k}$ for Film 2 - better than selling to both for 10k.
24. Total: $\$ 37 \mathrm{k}$
25. Legal, common pricing strategy
v. Bundling
26. Offer both films as a bundle
27. A would pay $\$ 37 \mathrm{k}$ for both
28. B would pay $\$ 28 \mathrm{k}$
29. Charge $\$ 28 \mathrm{k}$ for the bundle
30. Total: $\$ 56 \mathrm{k}$
31. Much higher! Not as good as perfect discrimination, but cannot implement perfect discrimination. This is actually implementable
b. Applications
i. Season tickets
ii. Complete dinner as opposed to à la carte
iii. Software that comes with a computer
c. Why?
i. Cost savings (in production, information management)
ii. Economies of scope.
iii. Complementarity - Items naturally belong together
iv. Customers have different reservation prices
d. Types
i. Pure bundling (available only as a bundle)
ii. Mixed bundling (offer separately or as a bundle)
iii. Pure components (no bundling at all)
e. With mixed bundling there's no (known) way to tell what mix will work best without just going through the motions of calculating the profit that would result
