

Notes – Chapter 9

Budgeting

- I. Nature of Budgeting
 - a. About 1/2 of all accounting comes down to budgeting
 - b. A budget is simply a plan expressed in quantitative terms.
 - c. Has a temporal dimension within what frame of time should the plan be executed?
 - d. Describes how resources will be acquired and used
- II. Types of Budget
 - a. Strategic
 - i. Multi-year time horizon
 - ii. Long-range
 - iii. Where do we want to be ...?
 - b. Operational
 - i. Short-term
 - ii. Monthly, Quarterly
 - iii. Could even do a budget by the hour if it would help.
 - iv. Will often have a continuous / rolling budget
 - 1. After one month ends, another is added to the end
 - 2. Budget always covers the same length of time that way.
 - c. Zero-Based
 - i. Other types used data from the last period to determine the budget for the next period.
 - ii. Zero-based demands that every dollar in the budget be justified every period. Nothing is included to start.
 - iii. This technique is uncommon in industry, but is slightly more popular in government.
 - iv. Industry has a lot of fixed costs that shouldn't be rationalized constantly.
 - v. It helps keep slack out of budgets, but it's VERY time-consuming.
- III. Benefits
 - a. Plan, Control, Coordinate, Allocate Resources, Evaluate Performance
 - b. Planning vs. Control
 - i. The budget is the link between planning and control.
 - ii. You first define your objectives, then define a plan (in the form of a budget) that will allow you to execute them.
 - iii. Then, as you execute the plan you can refer to the budget to gauge your progress.
 - c. Organizing for Budgeting
 - i. Differs from one firm to another.
 - ii. Generally have a standing committee
 - iii. Functional VPs are usually involved.
 - iv. Control would usually be in charge of the overall process.
- IV. Process
 - a. Dictatorial Approach
 - i. President dictates some expectations without regard to information from individual departments.
 - ii. Budget will then be expected to meet those expectations.
 - iii. Becomes somewhat of a game of how to meet the expectations rather than a drive toward the best plan.
 - b. Participative Budgeting
 - i. Let each department contribute their information and use that to derive the budget.
 - ii. It's possible to be *too* participative though, where everybody focuses too much on their own needs.

- iii. Give everyone the opportunity to give input about their functional arenas.
- c. Good Budget Process Traits
 - i. Participation makes people "buy in" more, so use it!
 - ii. Political gamesmanship should be minimized.
 - iii. The budget needs to reflect reality.
 - iv. It needs to have utility
 - 1. Don't create an attractive shelf-filler
 - 2. People should be able to use it as a control device throughout the period.
- d. Bad Budget Process Traits
 - i. If you have a dictated budget, nobody believes it the wheels fall off.
 - ii. Don't pad the numbers.
 - iii. Don't make it unrealistic.
 - iv. The budget shouldn't be a "club."
 - 1. If somebody misses a number, investigate and find a solution.
 - 2. Don't use it to threaten people, or you'll bring about padding next period!
- e. Activity Based Budgeting
 - i. Reverse of Activity Based Costing
 - ii. Start with forecasts of where you want to be.
 - iii. Work upward to get starting product production schedules.
 - iv. (ABC would start with production and work down toward the bottom line.)
- V. Master Budget
 - a. Components
 - i. Define operational focus; use to derive budgeted financial statements.
 - ii. Start with forecasts of demand (and thus sales).
 - iii. Forecast the need for Direct Material, Direct Labor, Overhead, and SG&A based on the sales forecasts.
 - iv. Identify assumptions that were made, risks, etc. That makes the data easier to interpret correctly later.
 - b. Alternate Perspective
 - i. Start with sales budget
 - ii. That determines production budget
 - iii. That, with El Budget and Capital Budget, determines Direct Labor, Direct Material, Overhead, and SG&A.
 - iv. Finally, those determine the cash budget.
 - v. Everything ultimately flows into the financial statements.
 - c. Forecasting Demand
 - i. Everything starts with a demand forecast, so an accurate prediction here becomes the key to an accurate budget.
 - ii. Start with what you did last period.
 - 1. May not be accurate for the future
 - 2. At least poses a good starting point.
 - iii. Consider general state of the economy
 - iv. Consider industry-specific factors
 - 1. Are there factors that will raise and lower demand in the industry independent of the rest of the economy?
 - 2. Ex: Telecom industry has taken a massive hit, so until there's improvement they need to weigh that into their forecasts.
 - d. Consider political / legal events.
 - e. What advertising promotions are planned?
 - f. What can competitors and major customers be expected to do?
 - g. Consider product introductions and discontinuations.
- VI. Production Planning Approaches
 - a. Once the basic budget is established, what orders need to be placed for materials, and when do they need to be placed?

- b. MRP, MRP I, MRP II
 - i. Most broadly used planning system today.
 - ii. MRP
 - 1. Material Requirements Planning
 - 2. Developed circa 1960s
 - iii. MRP I
 - 1. Material Resource Planning
 - 2. Includes labor
 - iv. MRP II
 - 1. Material Resource Planning
 - 2. Adds financial functions
 - v. In essence, it's a big simulation.
 - vi. The Idea
 - 1. From the revenue plan, develop a production plan.
 - 2. That generates material requirements plan.
 - 3. (That much covers MRP)
 - 4. Then add capacity requirements and a realism check
 - a. If we order a billion pounds of material, will the factory be able to handle it all?
 - b. Space the material orders out not just for the ideal
 - production schedule, but for a realistic one.
 - vii. Questions Asked & Answered
 - 1. What will we make?
 - 2. What's required to do that?
 - 3. What do we already have?
 - 4. Based on all that, what do we need to order?
 - viii. Components
 - 1. Master Production Schedule
 - a. Accounts for existing backlog
 - b. Adds forecasted demand
 - 2. That feeds into the MRP program
 - a. Looks at Bills of Materials (BOMs)
 - b. If it takes 1 B, 2 Cs, and 3 Ds to make an A, what do we need to order to make x As?
 - c. So from the predicted demand, we can calculate the need for orders.
 - ix. Considerations
 - 1. Software accounts for what materials are already on hand.
 - 2. It also accounts for sub-levels.
 - a. If 1 B is needed to make an A, what's needed to make a B?
 - b. Is it ordered as a unit, or is it made from other parts?
 - c. Order whatever parts are needed for that too.
 - x. Result is a schedule for purchase orders that gets material through the system at (hopefully) exactly the right pace.
 - xi. The alternative is to plan on a quarterly basic, which is just plain inaccurate.
- c. ERP
 - i. Enterprise Resource Planning
 - ii. A natural extension of MRP
 - iii. Enterprise-wide accounting system that merges existing systems together.
 - iv. Existing Systems
 - 1. Financial Accounting
 - 2. Purchase Orders
 - 3. Et cetera.
 - 4. (Consider the example of the military with its 157 independent accounting systems).
 - 5. Individual components can't naturally talk to each other.

- v. ERP mixes everything together so the data is all in one place.
- vi. That takes away the inefficiency associated with maintaining so many separate systems.
- vii. Who's Involved?
 - 1. Oracle, SAP, JD Edwards.
 - 2. Integration by EDX, IBM
- viii. Further integration with the supply chain is beginning to develop too, but it's still in the early stages.
- ix. Risks
 - 1. It's expensive! (as much as \$100 million to implement)
 - 2. It's inflexible. Everything is to closely related to change the system.
 - a. It's designed to have some flexibility, but within limits.
 - b. The process can end up adapting to the software, instead of the software adapting to the process.
 - 3. The switchover is not necessarily easy.
 - a. By its very nature, ERP cannot be implemented incrementally.
 - b. Consider the Hershey example where the ERP system "crashed and burned" when first turned on.
- VII. Push vs. Pull
 - a. Push
 - i. Driven by a forecast
 - ii. Define a production plan to drive manufacturing.
 - iii. Plan for x units, manufacture x units, and push them through the system.
 - iv. If production exceeds demand, inventory accumulates unnecessarily.
 - v. Postponement
 - 1. Wait until the last minute to start pushing through the system.
 - 2. It gives more flexibility.
 - 3. The problem is some components may have long lead times, and can't be pushed through if enough time isn't reserved.
 - vi. Safety stock. Keep a buffer.
 - b. Pull
 - i. This is the solution of the forecasting problems of a push system.
 - ii. Build to order, but with a twist.
 - iii. Driven by demand; demand pulls inventory through the system.
 - iv. Don't manufacture anything until a signal is received from down the line.
 - v. Conbon system. (Toyota's example; conbon means car).
 - vi. Not much inventory will be in the system at any one time.
 - vii. The twist is building the capability into the system to respond to those pulls of demand.
 - c. JIT
- i. Just in Time.
- ii. It's not a production planning system per se, but a philosophy about how to approach production.
- iii. Based on the pull system.
- iv. Chief concern is eliminating waste
 - 1. Biggest potential waste is inventory.
 - 2. Inventory can be a crutch.
 - 3. Drain it away to expose other problems (draining the pond example).
- v. Velocity refers to the ability to move product through the system.
- vi. Requirements.
 - 1. Small lot size. Be able to produce small amounts at once.
 - 2. Employee participation. Need to be involved in providing and reacting to information.
 - 3. Always work toward improvement (continuously)
 - 4. Quality Control

- a. Need reliable material from suppliers.
- b. Can't be wasting time doing quality inspections at the outset.
- vii. Assumptions
 - 1. Stability.
 - a. Need a stable production environment to implement JIT.
 - b. Perhaps unrealistic?
 - c. Shorter product life cycles may disrupt this.
 - 2. Upstream supply chain must also use JIT
 - a. Firms with enough power can just force their suppliers to adopt JIT.
 - b. Or just deal with some inefficiency at that end of the production line and have some incoming buffer.
- viii. JIT is an asymptotic ideal you can never really get there completely.
- ix. JIT vs MRP
 - 1. MRP is built on forecasts, so is push-based.
 - 2. Some hybridization is occurring, where JIT is used on the floor, but MRP is used from the office.
- x. This creates some challenges for traditional managerial accounting.
 - 1. Material can flow through the system faster than you can analyze the information associated with it.
 - 2. That goes well beyond the scope of this course.
 - 3. Be aware that many models we study are changing as a result of JIT and related topics.